
Reference manual

FICO R© Xpress Optimization MIP Solution Pool

Reference manual

Release 31.01

Last update 04 April 2017

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©1983–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

Xpress-Optimizer

Deliverable Version: A

Last Revised: 04 April 2017

Version 31.01

Contents

I MIP Solution Pool 1

1 Introduction 2
1.1 Overview . 2
1.2 Data Model . 2
1.3 Solution input . 3

1.3.1 Attaching problems . 4
1.3.2 Input from file and from memory . 5

1.4 Solution querying . 5
1.4.1 Solution value output to file and memory . 6
1.4.2 Attributes . 6
1.4.3 MIP solution pool attributes . 6
1.4.4 Solution attributes . 6
1.4.5 Problem attributes . 7
1.4.6 Solution and problem pair attributes . 7

1.5 Getting lists of solutions . 7
1.6 Control options . 7

1.6.1 Duplicate solutions . 7

2 MSP Functions 9
XPRS_msp_addcbmsghandler . 12
XPRS_msp_create . 13
XPRS_msp_delsol . 14
XPRS_msp_destroy . 15
XPRS_msp_findsolbyname . 16
XPRS_msp_getcbmsghandler . 17
XPRS_msp_getdblattrib . 18
XPRS_msp_getdblattribprob . 19
XPRS_msp_getdblattribprobextreme . 20
XPRS_msp_getdblattribprobsol . 21
XPRS_msp_getdblattribsol . 22
XPRS_msp_getdblcontrol . 23
XPRS_msp_getdblcontrolsol . 24
XPRS_msp_getintattrib . 25
XPRS_msp_getintattribprob . 26
XPRS_msp_getintattribprobextreme . 27
XPRS_msp_getintattribprobsol . 28
XPRS_msp_getintattribsol . 29
XPRS_msp_getintcontrol . 30
XPRS_msp_getintcontrolsol . 31
XPRS_msp_getlasterror . 32
XPRS_msp_getsol . 33
XPRS_msp_getsollist . 34
XPRS_msp_getsollist2 . 36

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

XPRS_msp_getsolname . 38
XPRS_msp_loadsol . 39
XPRS_msp_probattach . 40
XPRS_msp_probdetach . 41
XPRS_msp_readslxsol . 42
XPRS_msp_removecbmsghandler . 43
XPRS_msp_setcbmsghandler . 44
XPRS_msp_setdblcontrol . 45
XPRS_msp_setdblcontrolsol . 46
XPRS_msp_setintcontrol . 47
XPRS_msp_setintcontrolsol . 48
XPRS_msp_setsolname . 49
XPRS_msp_writeslxsol . 50

3 MSP Control Parameters 51
MSP_DEFAULTUSERSOLFEASTOL . 51
MSP_DEFAULTUSERSOLMIPTOL . 52
MSP_DUPLICATESOLUTIONSPOLICY . 52
MSP_INCLUDEPROBNAMEINLOGGING . 52
MSP_SOL_BITFIELDSUSR . 52
MSP_SOL_FEASTOL . 53
MSP_SOL_MIPTOL . 53

4 MSP Attributes 54
MSP_PRB_FEASIBLESOLS . 56
MSP_PRB_VALIDSOLS . 57
MSP_SOLPRB_INFCNT_BIN . 57
MSP_SOLPRB_INFCNT_COLUMN . 57
MSP_SOLPRB_INFCNT_DELAYEDROW . 57
MSP_SOLPRB_INFCNT_INT . 57
MSP_SOLPRB_INFCNT_MIP . 57
MSP_SOLPRB_INFCNT_PI . 58
MSP_SOLPRB_INFCNT_PRIMAL . 58
MSP_SOLPRB_INFCNT_SC . 58
MSP_SOLPRB_INFCNT_SET1 . 58
MSP_SOLPRB_INFCNT_SET2 . 58
MSP_SOLPRB_INFCNT_SI . 58
MSP_SOLPRB_INFCNT_SLACK . 59
MSP_SOLPRB_INFEASCOUNT . 59
MSP_SOLPRB_INFMAX_BIN . 59
MSP_SOLPRB_INFMAX_COLUMN . 59
MSP_SOLPRB_INFMAX_DELAYEDROW . 59
MSP_SOLPRB_INFMAX_INT . 59
MSP_SOLPRB_INFMAX_PI . 60
MSP_SOLPRB_INFMAX_SC . 60
MSP_SOLPRB_INFMAX_SET1 . 60
MSP_SOLPRB_INFMAX_SET2 . 60
MSP_SOLPRB_INFMAX_SI . 60
MSP_SOLPRB_INFMAX_SLACK . 60
MSP_SOLPRB_INFMXI_BIN . 61
MSP_SOLPRB_INFMXI_COLUMN . 61
MSP_SOLPRB_INFMXI_DELAYEDROW . 61
MSP_SOLPRB_INFMXI_INT . 61
MSP_SOLPRB_INFMXI_PI . 61
MSP_SOLPRB_INFMXI_SC . 61

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

MSP_SOLPRB_INFMXI_SET1 . 62
MSP_SOLPRB_INFMXI_SET2 . 62
MSP_SOLPRB_INFMXI_SI . 62
MSP_SOLPRB_INFMXI_SLACK . 62
MSP_SOLPRB_INFSUM_BIN . 62
MSP_SOLPRB_INFSUM_COLUMN . 62
MSP_SOLPRB_INFSUM_DELAYEDROW . 63
MSP_SOLPRB_INFSUM_INT . 63
MSP_SOLPRB_INFSUM_MIP . 63
MSP_SOLPRB_INFSUM_PI . 63
MSP_SOLPRB_INFSUM_PRIMAL . 63
MSP_SOLPRB_INFSUM_SC . 63
MSP_SOLPRB_INFSUM_SET1 . 64
MSP_SOLPRB_INFSUM_SET2 . 64
MSP_SOLPRB_INFSUM_SI . 64
MSP_SOLPRB_INFSUM_SLACK . 64
MSP_SOLPRB_OBJ . 64
MSP_SOLUTIONS . 64
MSP_SOL_BITFIELDSSYS . 65
MSP_SOL_COLS . 65
MSP_SOL_ISREPROCESSEDUSERSOLUTION . 65
MSP_SOL_ISUSERSOLUTION . 65
MSP_SOL_NONZEROS . 65

II MIP Solution Enumerator 66

5 Introduction 67
5.1 Overview . 67
5.2 Applications: N-Best Solutions Example . 67
5.3 Presolve considerations . 68
5.4 Basic customization . 69
5.5 Advanced customization . 69
5.6 Data Model . 70

6 MSE Functions 71
XPRS_mse_addcbmsghandler . 73
XPRS_mse_create . 74
XPRS_mse_defaulthandler . 75
XPRS_mse_destroy . 76
XPRS_mse_getcbmsghandler . 77
XPRS_mse_getcullchoice . 78
XPRS_mse_getdblattrib . 79
XPRS_mse_getdblcontrol . 80
XPRS_mse_getintattrib . 81
XPRS_mse_getintcontrol . 82
XPRS_mse_getlasterror . 83
XPRS_mse_getsolbasename . 84
XPRS_mse_getsollist . 85
XPRS_mse_getsolmetric . 86
XPRS_mse_maxim . 87
XPRS_mse_minim . 88
XPRS_mse_opt . 89
XPRS_mse_removecbmsghandler . 90
XPRS_mse_setcbgetsolutiondiff . 91

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

XPRS_mse_setcbmsghandler . 93
XPRS_mse_setdblcontrol . 94
XPRS_mse_setintcontrol . 95
XPRS_mse_setsolbasename . 96

7 MSE Controls 97
MSE_CALLBACKCULLSOLS_DIVERSITY . 97
MSE_CALLBACKCULLSOLS_MIPOBJECT . 98
MSE_CALLBACKCULLSOLS_MODOBJECT . 98
MSE_OPTIMIZEDIVERSITY . 98
MSE_OUTPUTTOL . 99

8 MSE Attributes 100
MSE_DIVERSITYSUM . 100
MSE_METRIC_DIVERSITY . 100
MSE_METRIC_MIPOBJECT . 101
MSE_METRIC_MODOBJECT . 101
MSE_SOLUTIONS . 101

Appendix 102

A Error codes 103
A.1 MIP Solution Pool errors . 103
A.2 MIP Solution Enumerator errors . 107

B Contacting FICO 109
Product support . 109
Product education . 109
Product documentation . 109
Sales and maintenance . 110
Related services . 110
About FICO . 110

Index 111

Fair Isaac Corporation Confidential and Proprietary Information iv

I. MIP Solution Pool

CHAPTER 1

Introduction

1.1 Overview

The MIP solution pool (XPRSmipsolpool) stores the column solution values for multiple solutions.
No slack or dual information is stored with the solutions. The solutions will usually be for MIP
problems although the pool will store any arbitrary length vector of double values. Solutions can
be read into the MIP solution pool by the user via the file reader routine
XPRS_msp_readslxsol or from memory via the XPRS_msp_loadsol routine. Solutions can also be
captured automatically from problems (XPRSprob) as they are found during a search.

Since the XPRSprob problems only store the best MIP solution the MIP solution pool is useful when
the user is interested in more than one MIP solution for a problem. This can happen when there
are constraints or costs not reflected in the problem that the user wants to use to select a solution
from a set that have been found by the FICO Xpress Optimizer.

Once a MIP solution pool contains some solutions the user can query for the solution values and
also for more abstract attributes such as the objective value of the solution with respect to a
given problem. Apart from querying information for a single solution the user has various
options for managing the set of stored solutions. The user can query for lists of stored solutions.
They may delete solutions from the pool and output solutions to file. Also, a set of policies are
available to the user for automatically handling the exclusion of solutions that are duplicated.

The following sections discuss the MIP solution pool functionality and provide some hints on
usage.

1.2 Data Model

The UML diagram in Figure 1.1 outlines the relationships the XPRSmipsolpool has with some
other data entities.

Starting from the bottom right the diagram shows that the XPRSmipsolpool contains 0 or more
solutions. Solutions are loaded into the MIP solution pool as a dense vector of double values.
Solution vectors of varying length can be stored in the same MIP solution pool so each solution
stores the number of columns nCols for the solution. When solutions are loaded they are stored
with a name and an ID number. The names of the stored solutions are maintained so they are
unique among the current set of stored solutions. The IDs are generated using a counter starting
from 1 and are therefore unique over all solutions ever to be stored in the MIP solution pool.
Note that no mapping of column names to column index values is stored with the solutions.
Therefore, the solutions are stored as plain vectors of implicitly indexed values. Note that
although the array of solution values Vals is represented in the Solution object in the diagram as
a dense array of doubles the solutions are stored in a compact form.

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

Figure 1.1:

Moving to the top right the diagram shows that the XPRSmipsolpool references 0 or more
XPRSprob problems and that an XPRSprob references at most 1 XPRSmipsolpool. This relationship is
managed through the "attaching" of problems to the MIP solution pool, which we discuss in
section "Attaching problems". Note that by attaching problems it is possible, for example, to
automatically capture MIP solutions from the problems as they are found by the solver.

Finally, moving to the top left the diagram shows the object defining the global entities for a
problem. Clearly the XPRSprob has one of these (even if it is empty in the case of an LP problem).
The XPRSmipsolpool may capture one of these from an attached problem and uses it only to
detect duplicate solutions. We discuss duplicate solutions in section "Duplicate solutions".

Once the MIP solution pool contains some solutions the user can administer the stored solutions
using the following functionality:-

� Solution names can be changed using the routine XPRS_msp_setsolname.

� Solutions can be deleted from the MIP solution pool by calling XPRS_msp_delsol with the ID
of the solution to delete.

� A mapping between solution name and ID is provided with the routines
XPRS_msp_findsolbyname and XPRS_msp_getsolname.

� Attributes of the solutions can be accessed using routines XPRS_msp_getsol,
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobsol,
XPRS_msp_getdblattribsol, XPRS_msp_getintattribsol,
XPRS_msp_getdblattribprob, XPRS_msp_getintattribprob,
XPRS_msp_getdblattribprobextreme and XPRS_msp_getintattribprobextreme.

� Lists of solution IDs can be generated based on attributes of the solutions with respect to a
given problem using the routine XPRS_msp_getsollist.

1.3 Solution input

Solutions can be input into the MIP solution pool from file, from memory and they can be

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

captured automatically by the MIP solution pool directly from XPRSprob problems. The following
two sections discuss this functionality.

1.3.1 Attaching problems

Of the more useful features of the MIP solution pool type has the ability to ’attach’ XPRSprob
problems to a MIP solution pool with a call to XPRS_msp_probattach. Once a problem is attached
to a MIP solution pool they interact automatically with useful functions. For example, when an
attached problem finds a solution it automatically stores the solution into the MIP solution pool.

As illustrated in the UML data model diagram a MIP solution pool can have one or more attached
problems although a problem can only be attached to at most one MIP solution pool. The
attached problems do not need to be copies of each other and they do not need to have the
same number of columns.

The MIP solution pool ensures each solution is automatically loaded to all attached problems with
the same number of columns as the solution. Solutions are loaded to a problem when the solver
is running the problem with XPRSminim (p.285 of the Optimizer Reference Manual)/XPRSmaxim
(p.285 of the Optimizer Reference Manual)/XPRSglobal (p.238 of the Optimizer Reference
Manual). The solver can then use the loaded solutions to update the best solution and/or as a
seed for heuristic searches.

Solutions loaded directly from attached problems (compared with solutions loaded by the user
from file or from memory) are marked with the MSP_SOL_ISUSERSOLUTION solution attribute set to
0.

Note that problems are automatically detached from their MIP solution pool when they are
destroyed (with a call to XPRSdestroyprob (p.163 of the Optimizer Reference Manual). A MIP
solution pool automatically detaches all problems when it is destroyed (with a call to
XPRS_msp_destroy).

Example:-

#include <stdio.h>
#include <stdio.h>
#include "xprs.h"

int main(int argc, char **argv) {
XPRSprob prob;
XPRSmipsolpool msp;
int i, nSols, nCols, iSolutionId, iSolutionIdStatus;
double dObj, dSol;
const char *sProblem = argv[1];

XPRSinit(NULL);

XPRScreateprob(&prob);

XPRSreadprob(prob, sProblem, "");

XPRS_msp_create(&msp);

XPRS_msp_probattach(msp, prob);

XPRSmaxim(prob, "g");

XPRS_msp_getintattrib(msp, XPRS_MSP_SOLUTIONS, &nSols);

if(nSols) {

XPRS_msp_getdblattribprobextreme(msp, prob, 0, &iSolutionId, XPRS_MSP_SOLPRB_OBJ,
&dObj);

printf("Optimal Solution ID: %i\n", iSolutionId);

Fair Isaac Corporation Confidential and Proprietary Information 4

Introduction

printf("Optimal Objective : %12.5f\n", dObj);

XPRS_msp_getintattribsol(msp, iSolutionId, &iSolutionIdStatus, XPRS_MSP_SOL_COLS,
&nCols);

for(i = 0; i < nCols; i++) {
XPRS_msp_getsol(msp, iSolutionId, &iSolutionIdStatus, &dSol, i, i, NULL);
printf("%3i = %12.5f\n", i, dSol);

}

}

XPRSdestroyprob(prob);

XPRS_msp_destroy(msp);

XPRSfree();
}

1.3.2 Input from file and from memory

Solutions can be input into the MIP solution pool via the file reader routine
XPRS_msp_readslxsol or from memory via the XPRS_msp_loadsol routine. When solutions are
loaded in these ways the user is returned the ID(s) of the stored solutions. When solutions are
input from memory via XPRS_msp_loadsol only one solution is stored per call and the user is
returned the ID of the stored solution each time. When solutions are input from file via
XPRS_msp_readslxsol the user is returned the first and last ID of the set of solutions that were
successfully stored.

Note that solutions are not stored with a mapping of column name to solution index. Therefore,
once a solution is stored the user is responsible for mapping the solution values against any
column names. The indexing of the solution values is determined when the solution is loaded.
When loading solutions from memory with a call to XPRS_msp_loadsol, the solution values are
indexed by their position in the dense array. Similarly, solutions loaded automatically to the MIP
solution pool from a problem are also indexed in this way.

When loading solutions from .slx file using XPRS_msp_readslxsol the file format has column
name/solution value pairs. Solution values may be mapped to solution index using a runtime
supplied name map object of type XPRSnamelist passed in the call to
XPRS_msp_readslxsol. The XPRSnamelist object is typically obtained from an XPRSprob by calling
XPRSgetnamelistobject (p.210 of the Optimizer Reference Manual) on the problem to get the
column name list (type 2). If the XPRSnamelist object is passed as NULL the solution values are
indexed by the order they are encountered in the file.

Solutions loaded by the user from file or from memory (compared with solutions loaded directly
from attached problems) are marked with the MSP_SOL_ISUSERSOLUTION solution attribute set to 1.

1.4 Solution querying

Generally, users will want to query stored solutions for their solution values. The values for
solutions can be written to file or passed to the user in memory using the
XPRS_msp_writeslxsol and XPRS_msp_getsol calls, respectively.

The user may be interested in abstract attributes of the solutions and the MIP solution pool itself.
For example, the user may want to know the number of solutions stored in the solution pool or
the number of non-zero values in a solution. They may also be interested in the objective value of
a solution with respect to a given problem or they may want to know how many feasible
solutions the MIP solution pool contains for a given problem. The user may perhaps also want to
get the list of solutions that are feasible for a given problem. The following sections discuss the

Fair Isaac Corporation Confidential and Proprietary Information 5

Introduction

various classes of these attributes and how they are accessed.

1.4.1 Solution value output to file and memory

The solution values are accessed in two ways. They are written to file using the routine
XPRS_msp_writeslxsol and they are retrieved in memory using the routine
XPRS_msp_getsol.

The routine XPRS_msp_writeslxsol allows one or more solution to be written to file. If
XPRS_msp_writeslxsol is passed with a problem (XPRSprob) pointer then the user can specify that
(i) a particular solution is written out, (ii) the best solution for the problem is written out or (iii)
all feasible solutions for the problem are written out. If no problem pointer is provided then the
user can specify that (i) a particular solution is written out or (ii) all solutions are written out. The
output .slx file has a format based on the MPS format. Each solution has a section in the .slx file
starting with the string ’NAME’ followed on the same line by the name of the solution. The records
of each section each correspond to the solution value at the associated position in the solution
array. If a problem is provided in the call then the column name is taken from the given problem
for the index position and is written out followed by the solution value; otherwise column names
are generated automatically based on a one-based indexing of the solution values.

The routine XPRS_msp_getsol provides in memory access to the values of a particular solution.
The routine can return all solution values or solution values over a range of indices.

1.4.2 Attributes

A MIP solution pool and its set of stored solutions have various attributes the user can query. For
example, the user can query the number of solutions stored in the solution pool or the number of
non-zeros in a solution. They may also, for example, query the objective value of a solution with
respect to a given problem or how many feasible solutions the MIP solution pool contains for a
given problem.

There are four classes of attributes:-

� MIP solution pool attributes.

� Solution attributes.

� Solution and problem pair attributes.

� Problem attributes.

Each class relates to a different set of entities in the data model of the MIP solution pool and has
a particular associated routine for accessing the attribute values. The following sections discuss
the attributes.

1.4.3 MIP solution pool attributes

These are attributes relating to the MIP solution pool as a whole. For example, the number of
solutions stored in the solution pool. These attributes are accessed using routines
XPRS_msp_getintattrib and XPRS_msp_getdblattrib.

1.4.4 Solution attributes

These are attributes relating to a particular solution. For example, the number of non-zero values
in a solution. These attributes are accessed using routines XPRS_msp_getintattribsol and
XPRS_msp_getdblattribsol.

Fair Isaac Corporation Confidential and Proprietary Information 6

Introduction

1.4.5 Problem attributes

These are attributes relating to the set of solutions with respect to a particular problem. For
example, how many solutions the MIP solution pool contains that have the same number of
columns as a given problem. These attributes are accessed using routines
XPRS_msp_getintattribprob and XPRS_msp_getdblattribprob.

1.4.6 Solution and problem pair attributes

These are attributes relating to a solution and problem pair. For example, the objective value of a
solution with respect to a given problem. These attributes are accessed using routines
XPRS_msp_getintattribprobsol and XPRS_msp_getdblattribprobsol.

The attributes here are a function of a solution and problem pair. However, the user may be
interested in the maximum or minimum value of an attribute over all solutions for a given
problem. For example, the minimum objective value of any stored solution with respect to a
given problem. The values for the attributes in this case are accessed using routines
XPRS_msp_getintattribprobextreme and XPRS_msp_getdblattribprobextreme. These routines are
special in that, as well as the returning attribute value, they also return the ID of a solution that
achieves the attribute value.

1.5 Getting lists of solutions

Apart from just getting an attribute value for a given solution and problem (using the functions
XPRS_msp_getintattribprobsol and XPRS_msp_getdblattribprobsol) the user may also be
interested in how an attribute behaves over a set of solutions. For example, the user may want
the objective function values for the solutions with respect to a given problem. Another example
may be that the user wants the MIP infeasibilities of the solutions with respect to a given
problem.

The function XPRS_msp_getsollist is used to query for a list of solutions based on an attribute.
The solutions are returned as a list of solution IDs. The user can choose to rank the returned
solutions by their attribute values and they may also choose to return solutions in a range of the
ranked ordering of the solutions. The user can, for example, get the objective functions of the
solutions ranked in ascending order so they can find the one (or more) solutions that have the
minimum objective value.

Note that XPRS_msp_getsollist will only return solutions for which the attribute is relevant. For
example, if the user queries on the objective function values then only feasible solutions of the
problem are returned. If, for example, the users queries on MIP infeasibilities then only those
solutions with any MIP infeasibilities are returned.

A function XPRS_msp_getsollist2, similar to XPRS_msp_getsollist, provides the user with
additional filtering control on the returned list of solution IDs.

1.6 Control options

1.6.1 Duplicate solutions

Handling solution duplicates is an issue of particular relevance to the storage of solutions. Firstly,
it is an issue with regards to the efficient use of the storage memory. It is also an issue with
regards to how the set of stored solutions for a problem reflects the properties of the problem.
For example, consider that we query, using XPRS_msp_getsollist, the solution pool looking for
MIP solutions of a problem and we find 10 solutions with the same, optimal MIP objective for the

Fair Isaac Corporation Confidential and Proprietary Information 7

Introduction

problem. We may believe that the problem has multiple optimal MIP solutions. However, if these
solutions are all duplicates then there is only one solution and we do not have proof the problem
has multiple optimal solutions.

The MIP solution pool provides a set of policies the user can choose as an integer control
parameter MSP_DUPLICATESOLUTIONSPOLICY for automatically handling the exclusion of solutions
that are duplicated. These are:-

� Keep all: There is no checking for duplicate solutions.

� Exact: Solution pairs are the same if all variables have exactly the same value. Duplicates
solutions are discarded.

� Exact and rounded: Solution pairs are the same if all continuous variables have exactly the
same value and the global component of the solution matches i.e., matches within
tolerance. Duplicates solutions are discarded.

� Rounded only: Solution pairs are the same if the global components of the solutions match.
Duplicates solutions are discarded.

When the policy requires duplicate solutions be discarded the MIP solution pool compares all
pairs of solutions to determine duplicates. If a solution is found to be duplicated by another
solution then the solution with the larger solution id value is discarded i.e., a solution that is
stored earlier is kept in place of a later, duplicate solution.

The global component of the solutions is determined by the global model of one of the
’attached’ problems. The attached problem that defines the global model is the first problem to
be attached to the MIP solution pool once the global model is undefined. The global model is
undefined when the MIP solution pool is first created and after the problem currently defining
the global model is ’detached’.

When comparing the global component of two solutions there are two types of tolerance used.
The MIPTOL (p.428 of the Optimizer Reference Manual) tolerance is used to define the rounded
values of the variables and the FEASTOL (p.402 of the Optimizer Reference Manual) tolerance is
used to define when solution values are zero. Each solution has a control for each of these
tolerances identified by MSP_SOL_MIPTOL and MSP_SOL_FEASTOL. The user can access these control
values for a solution using XPRS_msp_getdblcontrolsol and
XPRS_msp_setdblcontrolsol.

The global component of a solution (assuming it is MIP feasible with respect to the global model)
is insensitive to small floating point variations in the values of the double solution variables e.g.,
a binary variable in a solution pair is compared as if the double solution value was rounded to 0
or 1. Therefore, comparing the global components of two solutions will match more readily than
comparing the variable values with exact matches. As a result there will be no fewer solutions
discarded using the global components comparison than there will be discarded using exact value
matches (and likely there will be more solutions discarded). For this reason it is important to use
care when using the policies that include global component comparisons since it is possible that
solutions of interest may be deleted from the pool. Note that this may be a problem in the case
where there is more than one global model for the solutions being stored in the MIP solution
pool. We may delete solutions that are considered to be duplicates with regards to the global
model used by the pool but are not considered duplicates by the other global model.

Fair Isaac Corporation Confidential and Proprietary Information 8

CHAPTER 2

MSP Functions

XPRS_msp_addcbmsghandler Declares an output callback function, called every time a line of
message text is output by the MIP solution pool. This callback function
will be called in addition to any output callbacks already added by
XPRS_msp_addcbmsghandler. p. 12

XPRS_msp_create Sets up a new MIP solution pool object. p. 13

XPRS_msp_delsol Deletes a solution from the pool. p. 14

XPRS_msp_destroy Destroys a MIP solution pool object and its resources. The object will
generally be created by a call to the function XPRS_msp_create. p. 15

XPRS_msp_findsolbyname Finds the id of a solution given the solution’s name. p. 16

XPRS_msp_getcbmsghandler Get the output callback function, as set by
XPRS_msp_setcbmsghandler. p. 17

XPRS_msp_getdblattrib Provides read access to the values of double attributes associated with
the MIP solution pool. p. 18

XPRS_msp_getdblattribprob Provides read access to the values of double attributes associated
with the MIP solution pool with respect to the given problem. p. 19

XPRS_msp_getdblattribprobextreme Retrieves the extreme value of a double attribute
associated with the set of solutions stored in the MIP solution pool
evaluated with respect to the given problem. For example, the minim
of the objective values of feasible solutions for the problem across the
solutions stored in the MIP solution pool. p. 20

XPRS_msp_getdblattribprobsol Provides read access to the values of double attributes
associated with the MIP solution pool with respect to the given
solution stored in the MIP solution pool and the given problem. For
example, the objective value of the given solution with respect to the
given problem. p. 21

XPRS_msp_getdblattribsol Provides read access to the values of double attributes associated a
solution stored in the MIP solution pool. p. 22

XPRS_msp_getdblcontrol Retrieves the value of a given double control parameter. p. 23

XPRS_msp_getdblcontrolsol Retrieves the value of a given double control parameter. p. 24

XPRS_msp_getintattrib Provides read access to the values of integer attributes associated with
the MIP solution pool. p. 25

Fair Isaac Corporation Confidential and Proprietary Information 9

MSP Functions

XPRS_msp_getintattribprob Provides read access to the values of integer attributes associated
with the MIP solution pool with respect to the given problem. For
example, the number of solutions in the MIP solution pool that are
feasible for the problem. p. 26

XPRS_msp_getintattribprobextreme Retrieves the extreme value of an integer attribute
associated with the set of solutions stored in the MIP solution pool
evaluated with respect to the given problem. For example, the minim
of the count of column bound infeasibilities for solutions of the
problem taken across solutions stored in the MIP solution pool that
have at least one column bound infeasibility for the problem. p. 27

XPRS_msp_getintattribprobsol Provides read access to the values of integer attributes
associated with the MIP solution pool with respect to the given
solution stored in the MIP solution pool and the given problem. For
example, the count of column bound infeasibilities for solutions of the
problem. p. 28

XPRS_msp_getintattribsol Provides read access to the values of integer attributes associated
with a solution stored in the MIP solution pool. For example, the
number of columns in the solution. p. 29

XPRS_msp_getintcontrol Retrieves the value of a given integer control parameter. p. 30

XPRS_msp_getintcontrolsol Retrieves the value of a given integer control parameter. p. 31

XPRS_msp_getlasterror Gets the last error message. p. 32

XPRS_msp_getsol Returns the solution values for a solution stored in the MIP solution
pool. p. 33

XPRS_msp_getsollist Returns a list of solution ids of solutions with the same number of
columns as prob_to_rank_against. The list may be sorted by the value
of some attribute of the solutions e.g., the objective function. The list
may be filtered to contain either only feasible solutions or only
infeasible solutions. p. 34

XPRS_msp_getsollist2 Returns a list of solution ids of solutions with the same number of
columns as prob_to_rank_against. The list may be sorted by the value
of some attribute of the solutions e.g., the objective function. The list
may be filtered to contain either only feasible solutions or only
infeasible solutions. This function is the same as XPRS_msp_getsollist in
terms of the purpose described so far. The additional functionality
provided by XPRS_msp_getsollist2 is to allow the returned solutions to
be filtered logically on the values of MSP_SOL_BITFIELDSSYS and
MSP_SOL_BITFIELDSUSR. p. 36

XPRS_msp_getsolname Gets the name of a solution stored in a MIP solution pool. p. 38

XPRS_msp_loadsol Loads a solution into a MIP solution pool. p. 39

XPRS_msp_probattach Attaches a problem to a MIP solution pool. p. 40

XPRS_msp_probdetach Detaches a problem from a MIP solution pool that was previously
attached with a call to XPRS_msp_probattach. p. 41

XPRS_msp_readslxsol Reads one or more solutions from an ASCII solution file (.slx). Solution
files can be created with a call to XPRS_msp_writeslxsol. p. 42

Fair Isaac Corporation Confidential and Proprietary Information 10

MSP Functions

XPRS_msp_removecbmsghandler Removes an output callback function previously added by
XPRS_msp_addcbmsghandler. The specified callback function will no
longer be called after it has been removed. p. 43

XPRS_msp_setcbmsghandler Declares an output callback function, called every time a line of
message text is output by a MIP solution pool object. p. 44

XPRS_msp_setdblcontrol Sets the value of a given double control parameter. p. 45

XPRS_msp_setdblcontrolsol Sets the value of a given double control parameter. p. 46

XPRS_msp_setintcontrol Sets the value of a given integer control parameter. p. 47

XPRS_msp_setintcontrolsol Sets the value of a given integer control parameter. p. 48

XPRS_msp_setsolname Changes the name of a solution stored in the MIP solution pool. p. 49

XPRS_msp_writeslxsol Creates an ASCII solution file (.slx) using a similar format to MPS files.
The file can contain one or more solutions. These files can be read back
into a MIP solution pool using the XPRS_msp_readslxsol function. p. 50

Fair Isaac Corporation Confidential and Proprietary Information 11

MSP Functions

XPRS_msp_addcbmsghandler

Purpose
Declares an output callback function, called every time a line of message text is output by the MIP
solution pool. This callback function will be called in addition to any output callbacks already
added by XPRS_msp_addcbmsghandler.

Synopsis
int XPRS_CC XPRS_msp_addcbmsghandler(XPRSmipsolpool msp, int (XPRS_CC *f_msghandler)

(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void * p, int priority);

Arguments
msp The current MIP solution pool

f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,
vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use a NULL value to cancel a
callback function.

vXPRSObject The object sending the message. Use XPRSgetobjecttypename (p.213 of the
Optimizer Reference Manual) to get the name of the object type.

vUserContext The user-defined object passed to the callback function.

vSystemThreadId The system id of the thread sending the message caste to a void *.

sMsg A null terminated character array (string) containing the message, which may simply
be a new line. When the callback is called for the first time sMsg will be a NULL
pointer.

iMsgType Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value means the callback is being called for the first time.

iMsgNumber The number associated with the message. If the message is an error or a warning
then you can look up the number in the section Optimizer Error and Warning
Messages for advice on what it means and how to resolve the associated issue.

p A user-defined object to be passed to the callback function.

priority An integer that determines the order in which multiple output callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Further information
To send messages to a log file the built in message handler XPRSlogfilehandler can be used. This
can be done with:

XPRS_msp_addcbmsghandler(msp, XPRSlogfilehandler, "log.txt");

Related topics
XPRS_msp_removecbmsghandler, XPRSgetobjecttypename (p.213 of the Optimizer Reference
Manual).

Fair Isaac Corporation Confidential and Proprietary Information 12

MSP Functions

XPRS_msp_create

Purpose
Sets up a new MIP solution pool object.

Synopsis
int XPRS_CC XPRS_msp_create(XPRSmipsolpool *msp)

Argument
msp Pointer to a variable holding the new MIP solution pool.

Further information

1. Calls to XPRS_msp_create must be made after the call to XPRSinit (p.252 of the Optimizer
Reference Manual).

2. All MIP solution pools created using a call to XPRS_msp_create should be disposed of with a call to
XPRS_msp_destroy.

Related topics
XPRSinit (p.252 of the Optimizer Reference Manual), XPRS_msp_destroy.

Fair Isaac Corporation Confidential and Proprietary Information 13

MSP Functions

XPRS_msp_delsol

Purpose
Deletes a solution from the pool.

Synopsis
int XPRS_CC XPRS_msp_delsol(XPRSmipsolpool msp, const int iSolutionId, int * const

iSolutionIdStatus)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution to be deleted.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution which is deleted.

Further information
The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

Related topics
XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 14

MSP Functions

XPRS_msp_destroy

Purpose
Destroys a MIP solution pool object and its resources. The object will generally be created by a
call to the function XPRS_msp_create.

Synopsis
int XPRS_CC XPRS_msp_destroy(XPRSmipsolpool msp)

Argument
msp MIP solution pool to be destroyed.

Related topics
XPRS_msp_create.

Fair Isaac Corporation Confidential and Proprietary Information 15

MSP Functions

XPRS_msp_findsolbyname

Purpose
Finds the id of a solution given the solution’s name.

Synopsis
int XPRS_CC XPRS_msp_findsolbyname(XPRSmipsolpool msp, const char *sSolutionName, int

*const iSolutionId)

Arguments
msp The current MIP solution pool.

sSolutionName A null terminated string containing the name of the solution to find.

iSolutionId Pointer to the integer where the solution id will be returned. A value of 0 will be
returned if the solution name does not exist.

Further information
Names of solutions enter the MIP solution pool via functions such as XPRS_msp_loadsol,
XPRS_msp_setsolname and XPRS_msp_readslxsol. Solutions entering the MIP solution pool directly
from attached problems are given automatic names.

Related topics
XPRS_msp_loadsol, XPRS_msp_setsolname, XPRS_msp_getsolname, XPRS_msp_readslxsol.

Fair Isaac Corporation Confidential and Proprietary Information 16

MSP Functions

XPRS_msp_getcbmsghandler

Purpose
Get the output callback function, as set by XPRS_msp_setcbmsghandler.

Synopsis
int XPRS_CC XPRS_msp_getcbmsghandler(XPRSmipsolpool msp, int (XPRS_CC

**r_f_msghandler)
(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void **object);

Arguments
msp The current MIP solution pool.

r_f_msghandler Pointer to the memory where the callback function will be returned.

Related topics
XPRS_msp_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 17

MSP Functions

XPRS_msp_getdblattrib

Purpose
Provides read access to the values of double attributes associated with the MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_getdblattrib(XPRSmipsolpool msp, const int iAttribId, double *

const Val)

Arguments
msp The current MIP solution pool.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Val Pointer to a double where the value of the attribute will be returned.

Related topics
XPRS_msp_getintattrib

Fair Isaac Corporation Confidential and Proprietary Information 18

MSP Functions

XPRS_msp_getdblattribprob

Purpose
Provides read access to the values of double attributes associated with the MIP solution pool with
respect to the given problem.

Synopsis
int XPRS_CC XPRS_msp_getdblattribprob(XPRSmipsolpool msp, XPRSprob prob, const int

iAttribId, double * const Dst)

Arguments
msp The current MIP solution pool.

prob Problem for which the attribute is required to be evaluated.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to a double where the value of the attribute will be returned.

Related topics
XPRS_msp_getintattribprob.

Fair Isaac Corporation Confidential and Proprietary Information 19

MSP Functions

XPRS_msp_getdblattribprobextreme

Purpose
Retrieves the extreme value of a double attribute associated with the set of solutions stored in
the MIP solution pool evaluated with respect to the given problem. For example, the minim of
the objective values of feasible solutions for the problem across the solutions stored in the MIP
solution pool.

Synopsis
int XPRS_CC XPRS_msp_getdblattribprobextreme(XPRSmipsolpool msp, XPRSprob

prob_to_rank_against, const int bGet_Max_Otherwise_Min, int * const
iSolutionId, const int iAttribId, double * const ExtremeVal)

Arguments
msp The current MIP solution pool.

prob_to_rank_against Problem for which the attribute is required to be evaluated.

bGet_Max_Otherwise_Min If set to a non-zero value the routine will return the maximum
attribute value; otherwise the minim attribute value will be returned.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

iSolutionId The id of the solution for which the returned attribute value was evaluated with
the problem prob_to_rank_against.

ExtremeVal Pointer to a double where the value of the attribute will be returned.

Further information

1. This function returns objective values only for feasible solutions. For attributes representing
infeasibility this function returns a meaningful value only if there any solutions with an
infeasibility associated with the attribute. For example, if the attribute represents the sum of
column bound infeasibilities for solutions in the MIP solution pool then a meaningful value is
only returned if there are any solutions with column bound infeasibilities for the problem.

2. The attributes accessed by this function are the same as those available through
XPRS_msp_getdblattribprobsol. That is, double attributes relating to a problem and solution
pair, e.g., the objective function value of a solution to the problem

3. If there is no value returned then the value of iSolutionId is set to 0; otherwise it will be the
positive id of the solution with the returned attribute value.

Related topics
XPRS_msp_getintattribprobextreme, XPRS_msp_getdblattribprobsol.

Fair Isaac Corporation Confidential and Proprietary Information 20

MSP Functions

XPRS_msp_getdblattribprobsol

Purpose
Provides read access to the values of double attributes associated with the MIP solution pool with
respect to the given solution stored in the MIP solution pool and the given problem. For example,
the objective value of the given solution with respect to the given problem.

Synopsis
int XPRS_CC XPRS_msp_getdblattribprobsol(MipSolPool msp, XPRSprob

prob_to_rank_against, const int iSolutionId, int * const iSolutionIdStatus,
const int iAttribId, double * const Dst)

Arguments
msp The current MIP solution pool.

prob_context Problem for which the attribute iAttribId is required to be evaluated using
solution iSolutionId .

iSolutionId The id of the solution for which the attribute iAttribId is evaluated with respect
to the problem prob_context.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to a double where the value of the attribute will be returned.

Further information

1. The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

2. The attributes accessed by this function are the same as those available through
XPRS_msp_getdblattribprobextreme. That is, double attributes relating to a problem and solution
pair, e.g., the objective function value of a solution to the problem

Related topics
XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribprobextreme, XPRS_msp_findsolbyname,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 21

MSP Functions

XPRS_msp_getdblattribsol

Purpose
Provides read access to the values of double attributes associated a solution stored in the MIP
solution pool.

Synopsis
int XPRS_CC XPRS_msp_getdblattribsol(XPRSmipsolpool msp, const int iSolutionId, int *

const iSolutionIdStatus, const int iAttribId, double * const Dst)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the attribute is to be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to a double where the value of the attribute will be returned.

Further information
The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

Related topics
XPRS_msp_getintattribsol, XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 22

MSP Functions

XPRS_msp_getdblcontrol

Purpose
Retrieves the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_msp_getdblcontrol(XPRSmipsolpool msp, const int iControlId, double *

const Val)

Arguments
msp The current MIP solution pool.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 4, or from the list in the xprs.h header file.

Val Pointer to a double where the value of the control will be returned.

Related topics
XPRS_msp_getintcontrol, XPRS_msp_setdblcontrol, XPRS_msp_setintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 23

MSP Functions

XPRS_msp_getdblcontrolsol

Purpose
Retrieves the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_msp_getdblcontrolsol(XPRSmipsolpool msp, int iSolutionId, int *

iSolutionIdStatus, const int iControlId, double * const Val)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the control is to be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 3, or from the list in the xprs.h header file.

Val Pointer to a double where the value of the control will be returned.

Related topics
XPRS_msp_getintcontrolsol, XPRS_msp_setdblcontrolsol, XPRS_msp_setintcontrolsol.

Fair Isaac Corporation Confidential and Proprietary Information 24

MSP Functions

XPRS_msp_getintattrib

Purpose
Provides read access to the values of integer attributes associated with the MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_getintattrib(XPRSmipsolpool msp, const int iAttribId, int * const

Val)

Arguments
msp The current MIP solution pool.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Val Pointer to an integer where the value of the attribute will be returned.

Related topics
XPRS_msp_getdblattrib.

Fair Isaac Corporation Confidential and Proprietary Information 25

MSP Functions

XPRS_msp_getintattribprob

Purpose
Provides read access to the values of integer attributes associated with the MIP solution pool with
respect to the given problem. For example, the number of solutions in the MIP solution pool that
are feasible for the problem.

Synopsis
int XPRS_CC XPRS_msp_getintattribprob(XPRSmipsolpool msp, XPRSprob prob, const int

iAttribId, int * const Dst)

Arguments
msp The current MIP solution pool.

prob Problem for which the attribute is required to be evaluated.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to an integer where the value of the attribute will be returned.

Related topics
XPRS_msp_getdblattribprob.

Fair Isaac Corporation Confidential and Proprietary Information 26

MSP Functions

XPRS_msp_getintattribprobextreme

Purpose
Retrieves the extreme value of an integer attribute associated with the set of solutions stored in
the MIP solution pool evaluated with respect to the given problem. For example, the minim of
the count of column bound infeasibilities for solutions of the problem taken across solutions
stored in the MIP solution pool that have at least one column bound infeasibility for the problem.

Synopsis
int XPRS_CC XPRS_msp_getintattribprobextreme(XPRSmipsolpool msp, XPRSprob

prob_to_rank_against, const int bGet_Max_Otherwise_Min, int * const
iSolutionId, const int iAttribId, int * const ExtremeVal)

Arguments
msp The current MIP solution pool.

prob_to_rank_against Problem for which the attribute is required to be evaluated.

bGet_Max_Otherwise_Min If set to a non-zero value the routine will return the maximum
attribute value; otherwise the minim attribute value will be returned.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

iSolutionId The id of the solution for which the returned attribute value was evaluated with
the problem prob_to_rank_against.

ExtremeVal Pointer to an integer where the value of the attribute will be returned.

Further information

1. For attributes representing infeasibility this function returns a meaningful value only if there any
solutions with an infeasibility associated with the attribute. For example, if the attribute
represents the count of column bound infeasibilities for solutions in the MIP solution pool then a
meaningful value is only returned if there are any solutions with column bound infeasibilities for
the problem.

2. The attributes accessed by this function are the same as those available through
XPRS_msp_getintattribprobsol. That is, integer attributes relating to a problem and solution
pair, e.g., the count of column bound infeasibilities for solutions of the problem.

3. If there is no value returned then the value of iSolutionId is set to 0; otherwise it will be the
positive id of the solution with the returned attribute value.

Related topics
XPRS_msp_getdblattribprobextreme, XPRS_msp_getintattribprobsol.

Fair Isaac Corporation Confidential and Proprietary Information 27

MSP Functions

XPRS_msp_getintattribprobsol

Purpose
Provides read access to the values of integer attributes associated with the MIP solution pool with
respect to the given solution stored in the MIP solution pool and the given problem. For example,
the count of column bound infeasibilities for solutions of the problem.

Synopsis
int XPRS_CC XPRS_msp_getdblattribprobsol(MipSolPool msp, XPRSprob

prob_to_rank_against, const int iSolutionId, int * const iSolutionIdStatus,
const int iAttribId, double * const Dst)

Arguments
msp The current MIP solution pool.

prob_context Problem for which the attribute iAttribId is required to be evaluated using
solution iSolutionId.

iSolutionId The id of the solution for which the attribute iAttribId is evaluated with respect
to the problem prob_context.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to an integer where the value of the attribute will be returned.

Further information

1. The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

2. The attributes accessed by this function are the same as those available through
XPRS_msp_getintattribprobextreme. That is, integer attributes relating to a problem and
solution pair, e.g., the count of column bound infeasibilities for solutions of the problem.

Related topics
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobextreme, XPRS_msp_findsolbyname,
XPRS_msp_getdblattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 28

MSP Functions

XPRS_msp_getintattribsol

Purpose
Provides read access to the values of integer attributes associated with a solution stored in the
MIP solution pool. For example, the number of columns in the solution.

Synopsis
int XPRS_CC XPRS_msp_getintattribsol(XPRSmipsolpool msp, const int iSolutionId, int *

const iSolutionIdStatus, const int iAttribId, int * const Dst)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the attribute is to be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes may
be found in Chapter 4, or from the list in the xprs.h header file.

Dst Pointer to an integer where the value of the attribute will be returned.

Further information
The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

Related topics
XPRS_msp_getdblattribsol, XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 29

MSP Functions

XPRS_msp_getintcontrol

Purpose
Retrieves the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_msp_getintcontrol(XPRSmipsolpool msp, const int iControlId, int *

const Val)

Arguments
msp The current MIP solution pool.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 3, or from the list in the xprs.h header file.

Val Pointer to an integer where the value of the control will be returned.

Related topics
XPRS_msp_getdblcontrol, XPRS_msp_setdblcontrol, XPRS_msp_setintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 30

MSP Functions

XPRS_msp_getintcontrolsol

Purpose
Retrieves the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_msp_getintcontrolsol(XPRSmipsolpool msp, int iSolutionId, int *

iSolutionIdStatus, const int iControlId, int * const Val)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the control is to be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 3, or from the list in the xprs.h header file.

Val Pointer to an integer where the value of the control will be returned.

Related topics
XPRS_msp_getdblcontrolsol, XPRS_msp_setdblcontrolsol, XPRS_msp_setintcontrolsol.

Fair Isaac Corporation Confidential and Proprietary Information 31

MSP Functions

XPRS_msp_getlasterror

Purpose
Gets the last error message.

Synopsis
int XPRS_CC XPRS_msp_getlasterror(XPRSmipsolpool msp, int * iMsgNumber, char * msg,

int iStringBufferBytes, int * iBytesInInternalString)

Arguments
mse The current MIP solution pool.

iMsgNumber A pointer to an integer to return the number of the last error message. Can be
NULL if not required. Refer to Chapter 11 of the Optimizer Reference Manual for a list
of possible error numbers, the errors and warnings that they indicate, and advice on
what they mean and how to resolve them.

msg A character buffer of length at least iStringBufferBytes to return the error message.
Can be NULL if not required.

iStringBufferBytes The length of the msg buffer.

iBytesInInternalString A pointer to an integer to return the number of bytes required to
store the error message. Can be NULL if not required.

Related topics
Chapter 11 of the Optimizer Reference Manual , XPRS_msp_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 32

MSP Functions

XPRS_msp_getsol

Purpose
Returns the solution values for a solution stored in the MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_getsol(XPRSmipsolpool msp, const int iSolutionId, int * const

iSolutionIdStatus, double x[], const int iColFirst, const int iColLast, int *
const nValuesReturned)

Arguments
Msp The current MIP solution pool.

iSolutionId The id of the required solution.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

x Double array where the values of the solution will be returned. May be NULL if not
required.

iColFirst Index of the column whose solution value is to be returned in the first element of
array x. If iColLast > iColFirst then any subsequent columns are to have their
values written to the subsequent elements of x.

iColLast If x is non-NULL then at most iColLast - iColFirst + 1 solution values will be
written to x. There will be fewer solution values written if iColLast is greater than or
equal to the number of columns in the solution.

nValuesReturned Pointer to an integer where the number of solution values that were available
to be written is returned. This number will always be less than or equal to iColLast -
iColFirst + 1. A value is returned for this parameter regardless of whether x is
passed as NULL. May be NULL if not required.

Further information

1. It is an error condition if iColLast <iColFirst or iColFirst <0 or if iColFirst is greater than or
equal to the number of columns in the solution.

2. The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

3. By passing x as NULL and setting iColFirst to 0 and iColLast to a large positive integer it is
possible to use XPRS_msp_getsol to obtain in the nValuesReturned parameter the number of
columns in the solution.

Related topics
XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 33

MSP Functions

XPRS_msp_getsollist

Purpose
Returns a list of solution ids of solutions with the same number of columns as
prob_to_rank_against. The list may be sorted by the value of some attribute of the solutions e.g.,
the objective function. The list may be filtered to contain either only feasible solutions or only
infeasible solutions.

Synopsis
int XPRS_CC XPRS_msp_getsollist(XPRSmipsolpool msp, XPRSprob prob_to_rank_against,

const int iRankAttrib, const int bRankAscending, const int iRankFirstIndex,
const int iRankLastIndex, int iSolutionIds_Zb[], int * const nReturnedSolIds,
int * const nSols)

Arguments
msp The current MIP solution pool.

prob_to_rank_against Problem for which the attribute iRankAttrib is evaluated in order to
rank the solution ids returned in the iSolutionIds array. Only solutions with the same
number of columns as prob_to_rank_against are considered when generating the list
of solution ids. May be NULL if the IDs of all solutions are to be returned.

iRankAttrib Id of the attribute whose value is used to rank the solution ids returned in the
iSolutionIds array. A full list of all available attributes may be found in Chapter 4, or
from the list in the xprs.h header file. If the attribute represents infeasibility then
only infeasible solutions will be returned; otherwise only feasible solutions will be
returned. If iRankAttrib is passed in as 0, or if it is not a valid attribute id, then the
solution ids of feasible solutions for the problem will be returned unranked. If
iRankAttrib is not a valid attribute id then a warning is logged. This argument is
ignored if prob_to_rank_against is passed as NULL.

bRankAscending If set to a non-zero value the function returns the solution ids ordered in
ascending order of the attribute value; otherwise the solution ids are returned in
descending order. This argument is ignored if prob_to_rank_against is passed as NULL
or if iRankAttrib is passed in as 0, or if it is not a valid attribute id.

iRankFirstIndex Index (one-based) in the rank order of solutions for which the associated
solution’s id number, if there is a solution at this index, is to be returned in the first
element of array iSolutionIds. If iRankLastIndex > iRankFirstIndex then any
subsequent solutions in the rank ordering are to have their solution ids written to the
subsequent elements of iSolutionIds.

iRankLastIndex If iSolutionIds is non-NULL then at most iRankLastIndex - iRankFirstIndex +
1 solution ids will be written to iSolutionIds. There will be fewer solution ids written
if iRankLastIndex is greater than the number of solutions in the MIP solution pool.

iSolutionIds Integer array where the solution ids will be returned. May be NULL if not
required.

nReturnedSolIds Pointer to an integer where the number of solution ids that were available to
be written is returned. This number will always be less than or equal to
iRankLastIndex - iRankFirstIndex + 1. A value is returned for this parameter
regardless of whether iSolutionIds is passed as NULL. May be NULL if not required.

nSols Pointer to an integer where the total number of solution ids that could possibly be
written is returned. May be NULL if not required.

Fair Isaac Corporation Confidential and Proprietary Information 34

MSP Functions

Further information

1. If iRankFirstIndex > iRankLastIndex and the nSols argument is passed down as NULL then the
routine will return with no solution ids written.

2. Information about the solution with respect to the problem can be obtained via routines
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol and
XPRS_msp_getintattribsol. The solution values can be obtained via the routine XPRS_msp_getsol.

Related topics
XPRS_msp_getsollist2, XPRS_msp_getsol, XPRS_msp_getdblattribprobsol,
XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol, XPRS_msp_getintattribsol.

Fair Isaac Corporation Confidential and Proprietary Information 35

MSP Functions

XPRS_msp_getsollist2

Purpose
Returns a list of solution ids of solutions with the same number of columns as
prob_to_rank_against. The list may be sorted by the value of some attribute of the solutions e.g.,
the objective function. The list may be filtered to contain either only feasible solutions or only
infeasible solutions. This function is the same as XPRS_msp_getsollist in terms of the purpose
described so far. The additional functionality provided by XPRS_msp_getsollist2 is to allow the
returned solutions to be filtered logically on the values of MSP_SOL_BITFIELDSSYS and
MSP_SOL_BITFIELDSUSR.

Synopsis
int XPRS_CC XPRS_msp_getsollist2(XPRSmipsolpool msp, XPRSprob prob_to_rank_against,

int iRankAttrib, int bRankAscending, int iRankFirstIndex_Ob, int
iRankLastIndex_Ob, int bUseUserBitFilter, int iUserBitMask, int
iUserBitPattern, int bUseInternalBitFilter, int iInternalBitMask, int
iInternalBitPattern, int iSolutionIds_Zb[], int * nReturnedSolIds, int * nSols)

Arguments
msp The current MIP solution pool.

prob_to_rank_against Problem for which the attribute iRankAttrib is evaluated in order to
rank the solution ids returned in the iSolutionIds array. Only solutions with the same
number of columns as prob_to_rank_against are considered when generating the list
of solution ids. May be NULL if the IDs of all solutions are to be returned.

iRankAttrib Id of the attribute whose value is used to rank the solution ids returned in the
iSolutionIds array. A full list of all available attributes may be found in Chapter 4, or
from the list in the xprs.h header file. If the attribute represents infeasibility then
only infeasible solutions will be returned; otherwise only feasible solutions will be
returned. If iRankAttrib is passed in as 0, or if it is not a valid attribute id, then the
solution ids of feasible solutions for the problem will be returned unranked. If
iRankAttrib is not a valid attribute id then a warning is logged. This argument is
ignored if prob_to_rank_against is passed as NULL.

bRankAscending If set to a non-zero value the function returns the solution ids ordered in
ascending order of the attribute value; otherwise the solution ids are returned in
descending order. This argument is ignored if prob_to_rank_against is passed as NULL
or if iRankAttrib is passed in as 0, or if it is not a valid attribute id.

iRankFirstIndex Index (one-based) in the rank order of solutions for which the associated
solution’s id number, if there is a solution at this index, is to be returned in the first
element of array iSolutionIds. If iRankLastIndex > iRankFirstIndex then any
subsequent solutions in the rank ordering are to have their solution ids written to the
subsequent elements of iSolutionIds.

iRankLastIndex If iSolutionIds is non-NULL then at most iRankLastIndex -
iRankFirstIndex + 1 solution ids will be written to iSolutionIds. There will be fewer
solution ids written if iRankLastIndex is greater than the number of solutions in the
MIP solution pool.

bUseUserBitFilter Set this value to 1 if the solutions should be filtered by their
MSP_SOL_BITFIELDSUSR control values using the values of iUserBitMask and
iUserBitPattern. If we let iBitFieldUser be the value of the MSP_SOL_BITFIELDSUSR
control for a solution then the solution will not be returned in the list if
(iBitFieldUser & iUserBitMask) != iUserBitPattern. Set to 0 if filtering is not
required on the MSP_SOL_BITFIELDSUSR control values.

iUserBitMask Bit mask used to filter solutions by their MSP_SOL_BITFIELDSUSR control values.

iUserBitPattern Bit pattern used to filter solutions by their MSP_SOL_BITFIELDSUSR control

Fair Isaac Corporation Confidential and Proprietary Information 36

MSP Functions

values.

bUseInternalBitFilter Set this value to 1 if the solutions should be filtered by their
MSP_SOL_BITFIELDSSYS attribute values using the values of iInternalBitMask and
iInternalBitPattern. If we let iBitFieldSys be the value of the
MSP_SOL_BITFIELDSSYS attribute for a solution then the solution will not be returned
in the list if (iBitFieldUser & iInternalBitMask) != iInternalBitPattern. Set to 0 if
filtering is not required on the MSP_SOL_BITFIELDSSYS attribute values.

iInternalBitMask Bit mask used to filter solutions by MSP_SOL_BITFIELDSSYS attribute values.

iInternalBitPattern Bit pattern used to filter solutions by MSP_SOL_BITFIELDSSYS attribute
values.

iSolutionIds Integer array where the solution ids will be returned. May be NULL if not
required.

nReturnedSolIds Pointer to an integer where the number of solution ids that were available to
be written is returned. This number will always be less than or equal to
iRankLastIndex - iRankFirstIndex + 1. A value is returned for this parameter
regardless of whether iSolutionIds is passed as NULL. May be NULL if not required.

nSols Pointer to an integer where the total number of solution ids that could possibly be
written is returned. May be NULL if not required.

Further information

1. If iRankFirstIndex > iRankLastIndex and the nSols argument is passed down as NULL then the
routine will return with no solution ids written.

2. Information about the solution with respect to the problem can be obtained via routines
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol and
XPRS_msp_getintattribsol. The solution values can be obtained via the routine XPRS_msp_getsol.

Related topics
XPRS_msp_getsollist, XPRS_msp_getsol, XPRS_msp_getdblattribprobsol,
XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol, XPRS_msp_getintattribsol.

Fair Isaac Corporation Confidential and Proprietary Information 37

MSP Functions

XPRS_msp_getsolname

Purpose
Gets the name of a solution stored in a MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_getsolname(XPRSmipsolpool msp, const int iSolutionId, char

*sname, const int iStringBufferBytes, int * const iBytesInInternalString, int *
const iSolutionIdStatus)

Arguments
msp The current MIP solution pool.

iSolutionId Id of the solution whose name is to be retrieved.

sname Pointer to a string where the name of the solution (plus null terminator) will be
returned. This argument can be passed with NULL.

iStringBufferBytes Maximum number of bytes to be returned in sname.

iBytesInInternalString Pointer to the integer where the number of bytes required storing the
name (including null terminator) will be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

Further information

1. Names of solutions stored in a MIP solution pool are unique.

2. The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

3. Names of solutions enter the MIP solution pool via functions such as XPRS_msp_loadsol,
XPRS_msp_setsolname and XPRS_msp_readslxsol. Solutions entering the MIP solution pool directly
from attached problems are given automatic names.

Related topics
XPRS_msp_setsolname, XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 38

MSP Functions

XPRS_msp_loadsol

Purpose
Loads a solution into a MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_loadsol(XPRSmipsolpool msp, int * const iSolutionId, const double

x[], const int nCols, const char *sSolutionName, int * const
bNameModifiedForUniqueness, int * const bSolutionNotLoadedBecauseOfDuplication)

Arguments
msp The current MIP solution pool.

iSolutionId Pointer to the integer where the id of the loaded solution will be returned.

x Double array of length nCols containing the solution to be stored.

nCols The number of elements in the solution array x.

sSolutionName The name to use to identify the solution to be stored. If the given name already
exists then the name to be stored will have characters appended to ensure the
resulting name is unique among the stored solutions. If sSolutionName is passed as
NULL then a unique name will be generated automatically for the solution.

bNameModifiedForUniqueness Pointer to an integer returning 1 if it was necessary for the given
solution name sNewSolutionBaseName to be modified to maintain uniqueness of
solution names; 0 otherwise.

bSolutionNotLoadedBecauseOfDuplication Pointer to an integer returning 1 if the solution was
rejected because it was found to a duplicate of an existing solution; 0 otherwise.

Further information
Information about the solution with respect to a problem can be obtained via routines
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol and
XPRS_msp_getintattribsol.

Related topics
XPRS_msp_getdblattribprobsol, XPRS_msp_getintattribprobsol, XPRS_msp_getdblattribsol,
XPRS_msp_getintattribsol.

Fair Isaac Corporation Confidential and Proprietary Information 39

MSP Functions

XPRS_msp_probattach

Purpose
Attaches a problem to a MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_probattach(XPRSmipsolpool msp, XPRSprob prob)

Arguments
msp The current MIP solution pool.

prob Problem to be attached to the MIP solution pool.

Further information

1. The function will return successfully if the solution is already attached to the MIP solution pool.

2. One or more problems can be attached to the MIP solution pool. A problem can only be attached
to one MIP solution pool.

3. The function will return an error if the problem is already attached to another MIP solution pool.

4. The user can detach the problem from the MIP solution pool with a call to XPRS_msp_probdetach.

5. A problem is automatically detached from a MIP solution pool when it is destroyed. A MIP
solution pool automatically detaches all problems when it is destroyed.

Related topics
XPRS_msp_probdetach.

Fair Isaac Corporation Confidential and Proprietary Information 40

MSP Functions

XPRS_msp_probdetach

Purpose
Detaches a problem from a MIP solution pool that was previously attached with a call to
XPRS_msp_probattach.

Synopsis
int XPRS_CC XPRS_msp_probdetach(XPRSmipsolpool msp, XPRSprob prob)

Arguments
msp The current MIP solution pool.

prob Problem to be detached from the MIP solution pool.

Further information
The function will return successfully if the solution is not attached to the MIP solution pool.

Related topics
XPRS_msp_probattach.

Fair Isaac Corporation Confidential and Proprietary Information 41

MSP Functions

XPRS_msp_readslxsol

Purpose
Reads one or more solutions from an ASCII solution file (.slx). Solution files can be created with
a call to XPRS_msp_writeslxsol.

Synopsis
int XPRS_CC XPRS_msp_readslxsol(XPRSmipsolpool msp, XPRSnamelist col_name_list, const

char * sFileName, const char *sFlags, int * const iSolutionId_Beg, int * const
iSolutionId_End)

Arguments
msp The current MIP solution pool.

col_name_list An object used to map column names on to solution indices. May be NULL if not
required.

sFileName Null terminated string containing the file name from which the solution(s) are to be
read.

sFlags Flags for XPRS_msp_readslxsol. None currently.

iSolutionId_Beg Pointer to an integer returning the solution ID of the first solution successfully
loaded from the file. May be NULL if not required.

iSolutionId_End Pointer to an integer returning the solution ID of the last solution successfully
loaded from the file. May be NULL if not required.

Further information

1. The user can obtain a reference to the object mapping column names to indices for a problem by
calling XPRSgetnamelistobject (p.210 of the Optimizer Reference Manual) with type 2. Passing
this object down to XPRS_msp_readslxsol means that only solutions in the .slx file with column
names contained in the mapping are loaded into the MIP solution pool. The loaded solutions will
have the same column count as the mapping. The values for any columns that do not have an
entry in the .slx file for a solution are set to zero.

2. If col_name_list is passed as NULL then all solutions are read into the MIP solution pool using the
position of the solution value in the file section as the solution index.

Related topics
XPRS_msp_writeslxsol.

Fair Isaac Corporation Confidential and Proprietary Information 42

MSP Functions

XPRS_msp_removecbmsghandler

Purpose
Removes an output callback function previously added by XPRS_msp_addcbmsghandler. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRS_msp_removecbmsghandler(XPRSmipsolpool msp, int (XPRS_CC

*f_msghandler)
(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void* object);

Arguments
msp The current MIP solution pool.

f_msghandler The callback function to remove. If NULL then all output callback functions added
with the given user-defined object value will be removed.

object The object value that the callback was added with. If NULL, then the object value will
not be checked and all variable branching callbacks with the function pointer
f_chgbranch will be removed.

Related topics
XPRS_msp_addcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 43

MSP Functions

XPRS_msp_setcbmsghandler

Purpose
Declares an output callback function, called every time a line of message text is output by a MIP
solution pool object.

Synopsis
int XPRS_CC XPRS_msp_setcbmsghandler(XPRSmipsolpool msp, int (XPRS_CC

*f_msghandler)(XPRSobject vXPRSObject, void * vUserContext, void *
vSystemThreadId, const char * sMsg, int iMsgType, int iMsgCode), void * p)

Arguments
msp The current MIP solution pool.

f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,
vSystemThreadId, sMsg, iMsgType and iMsgCode. Use a NULL value to cancel a callback
function.

vXPRSObject A generic pointer to the msp object sending the message.

vUserContext The user-defined object passed to the callback function.

vSystemThreadId The system id of the thread sending the message caste to a void *.

sMsg A null terminated character array (string) containing the message, which may simply
be a new line. When the callback is called for the first time sMsg will be a NULL
pointer.

iMsgType Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value means the callback is being called for the first time.

iMsgCode The code associated with the message. If the message is an error or a warning then
you can look up the code in Chapter 11 of the Optimizer Reference Manual for advice
on what it means and how to resolve the associated issue.

p A user-defined object to be passed to the callback function.

Further information

1. To send all messages to a log file the built in message handler XPRSlogfilehandler can be used.
This can be done with:

XPRS_msp_setcbmsghandler(msp, XPRSlogfilehandler, "log.txt");

2. The return value for this callback is ignored.

Related topics
None.

Fair Isaac Corporation Confidential and Proprietary Information 44

MSP Functions

XPRS_msp_setdblcontrol

Purpose
Sets the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_msp_setdblcontrol(XPRSmipsolpool msp, const int iControlId, const

double Val)

Arguments
msp The current MIP solution pool.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 3, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_msp_getdblcontrol, XPRS_msp_setintcontrol, XPRS_msp_getintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 45

MSP Functions

XPRS_msp_setdblcontrolsol

Purpose
Sets the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_msp_setdblcontrolsol(XPRSmipsolpool msp, int iSolutionId, int *

iSolutionIdStatus, const int iControlId, const double Val)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the control is to be set.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 3, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_msp_getdblcontrolsol, XPRS_msp_setintcontrolsol, XPRS_msp_getintcontrolsol.

Fair Isaac Corporation Confidential and Proprietary Information 46

MSP Functions

XPRS_msp_setintcontrol

Purpose
Sets the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_msp_setintcontrol(XPRSmipsolpool msp, const int iControlId, const int

Val)

Arguments
msp The current MIP solution pool.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 3, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_msp_getintcontrol, XPRS_msp_setdblcontrol, XPRS_msp_getdblcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 47

MSP Functions

XPRS_msp_setintcontrolsol

Purpose
Sets the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_msp_setintcontrolsol(XPRSmipsolpool msp, int iSolutionId, int *

iSolutionIdStatus, const int iControlId, const int Val)

Arguments
msp The current MIP solution pool.

iSolutionId The id of the solution for which the control is to be set.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 3, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_msp_getintcontrolsol, XPRS_msp_getdblcontrolsol, XPRS_msp_setdblcontrolsol.

Fair Isaac Corporation Confidential and Proprietary Information 48

MSP Functions

XPRS_msp_setsolname

Purpose
Changes the name of a solution stored in the MIP solution pool.

Synopsis
int XPRS_CC XPRS_msp_setsolname(XPRSmipsolpool msp, const int iSolutionId, const char

*sNewSolutionBaseName, int * const gbNameModifiedForUniqueness, int * const
iSolutionIdStatus)

Arguments
msp The current MIP solution pool.

iSolutionId Id of the solution whose name is to be changed.

sNewSolutionBaseName The new name to use to identify the solution. If the given name already
exists and is used by another solution then the name to be stored will have characters
appended to ensure the resulting name is unique among the stored solutions. If
sNewSolutionBaseName is passed as NULL then a unique name will be generated
automatically for the solution.

bNameModifiedForUniqueness Pointer to an integer returning 1 if it was necessary for the given
solution name sNewSolutionBaseName to be modified to maintain uniqueness of
solution names; 0 otherwise.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

Further information
The user will obtain the solution id iSolutionId from interaction with the MIP solution pool via
functions such as XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme and XPRS_msp_getsollist.

Related topics
XPRS_msp_getsolname, XPRS_msp_findsolbyname, XPRS_msp_getdblattribprobextreme,
XPRS_msp_getintattribprobextreme, XPRS_msp_getsollist.

Fair Isaac Corporation Confidential and Proprietary Information 49

MSP Functions

XPRS_msp_writeslxsol

Purpose
Creates an ASCII solution file (.slx) using a similar format to MPS files. The file can contain one
or more solutions. These files can be read back into a MIP solution pool using the
XPRS_msp_readslxsol function.

Synopsis
int XPRS_CC XPRS_msp_writeslxsol(XPRSmipsolpool msp, XPRSprob prob_context, int

iSolutionId, int * iSolutionIdStatus, const char * sFileName, const char *
sFlags)

Arguments
msp The current MIP solution pool.

prob_context Pointer to a problem. Can be NULL. See table below for interpretation in terms of
function behaviour.

iSolutionId The id of a solution to write; otherwise a flag. See table below for interpretation
in terms of function behaviour.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

sFileName Null terminated string containing the file name to which the solution(s) is to be
written.

sFlags Flags for XPRS_msp_writeslxsol:
p use full precision for numerical values;
x use hexadecimal format to write values.

Further information
This table defines the interpretation of the values of arguments prob_context and iSolutionId in
terms of the behaviour of XPRS_msp_writeslxsol.

prob_context iSolutionId Behaviour
Non-NULL 0 Write out all feasible solutions to prob_context. Use

the column names in prob_context.
Non-NULL 0 Write out a feasible solution to prob_context with the

best objective (given the OBJSENSE (p.478 of the Opti-
mizer Reference Manual) value of prob_context). Use
the column names in prob_context.

Non-NULL > 0 Write out the solution with ID iSolutionId. It is an
error if the solution does not have the same number
of columns as prob_context. Use the column names in
prob_context.

NULL ≤ 0 Write out all solutions. Use automatically generated
column names.

NULL > 0 Write out the solution with ID iSolutionId. Use auto-
matically generated column names.

Related topics
XPRS_msp_readslxsol.

Fair Isaac Corporation Confidential and Proprietary Information 50

CHAPTER 3

MSP Control Parameters

MSP_DEFAULTUSERSOLFEASTOL This is the zero tolerance on the value of integer, semi-continuous,
partial and semi-continuos integer variables and SOS variables. If one
of these is less than or equal to FEASTOL in absolute value, it is treated
as zero. p. 51

MSP_DEFAULTUSERSOLMIPTOL This is the tolerance within which a decision variable’s value is
considered to be integral. It is the default value for the tolerance
MSP_SOL_MIPTOL when a solution is added by the user via routines
XPRS_msp_loadsol and XPRS_msp_readslxsol. p. 52

MSP_DUPLICATESOLUTIONSPOLICY Policy to use when handling storage of duplicate solutions.
p. 52

MSP_INCLUDEPROBNAMEINLOGGING Controls whether or not the MIP solution pool logging uses the
problem name when a message references a problem. p. 52

MSP_SOL_BITFIELDSUSR A user-definable bit map to be stored with a solution. This bit map can
be used to define subsets of solutions returned by the
XPRS_msp_getsollist2 function. p. 52

MSP_SOL_FEASTOL This is the zero tolerance on the value of integer, semi-continuous,
partial and semi-continuos integer variables and SOS variables. If one
of these is less than or equal to FEASTOL in absolute value, it is treated
as zero. p. 53

MSP_SOL_MIPTOL This is the tolerance within which a decision variable’s value is
considered to be integral. p. 53

MSP_DEFAULTUSERSOLFEASTOL

Description This is the zero tolerance on the value of integer, semi-continuous, partial and
semi-continuos integer variables and SOS variables. If one of these is less than or equal
to FEASTOL (p.402 of the Optimizer Reference Manual) in absolute value, it is treated as
zero.

Type Double

Default value 1.0E-06

Fair Isaac Corporation Confidential and Proprietary Information 51

MSP Control Parameters

MSP_DEFAULTUSERSOLMIPTOL

Description This is the tolerance within which a decision variable’s value is considered to be integral.
It is the default value for the tolerance MSP_SOL_MIPTOL when a solution is added by the
user via routines XPRS_msp_loadsol and XPRS_msp_readslxsol.

Type Double

Default value 5.0E-06

MSP_DUPLICATESOLUTIONSPOLICY

Description Policy to use when handling storage of duplicate solutions.

Type Integer

Values 0 Keep all: All solutions are kept including duplicates.

1 Continuous: All variables are compared with an exact match. Duplicate
solutions are discarded.

2 Discrete and continuous separate: Both the discrete component of a solution
pair and the continuous solution variables are compared. The continuous
variables are compared with an exact match. Duplicate solutions are discarded.

3 Discrete only: Only the discrete component of a solution pair is compared.
Duplicate solutions are discarded.

Default value 3

MSP_INCLUDEPROBNAMEINLOGGING

Description Controls whether or not the MIP solution pool logging uses the problem name when a
message references a problem.

Type Integer

Values 0 The problem name is not included.

1 The problem name is included.

Default value 1

MSP_SOL_BITFIELDSUSR

Description A user-definable bit map to be stored with a solution. This bit map can be used to
define subsets of solutions returned by the XPRS_msp_getsollist2 function.

Type Integer

Default value 0

Fair Isaac Corporation Confidential and Proprietary Information 52

MSP Control Parameters

Affects routines XPRS_msp_getintcontrolsol, XPRS_msp_setintcontrolsol.

See also XPRS_msp_getsollist2.

MSP_SOL_FEASTOL

Description This is the zero tolerance on the value of integer, semi-continuous, partial and
semi-continuos integer variables and SOS variables. If one of these is less than or equal
to FEASTOL (p.402 of the Optimizer Reference Manual) in absolute value, it is treated as
zero.

Type Double

Default value 1.0E-06

MSP_SOL_MIPTOL

Description This is the tolerance within which a decision variable’s value is considered to be integral.

Type Double

Default value 5.0E-06

Fair Isaac Corporation Confidential and Proprietary Information 53

CHAPTER 4

MSP Attributes

MSP_PRB_FEASIBLESOLS Number of feasible solutions for the problem. p. 56

MSP_PRB_VALIDSOLS Number of solutions with the same number of columns as the
problem. p. 57

MSP_SOL_BITFIELDSSYS A bit map with fields containing the logical attribute values for the
solution e.g., MSP_SOL_ISREPROCESSEDUSERSOLUTION and
MSP_SOL_ISUSERSOLUTION. p. 65

MSP_SOL_COLS Number of columns in the solution. p. 65

MSP_SOL_ISREPROCESSEDUSERSOLUTION Whether or not the solution arises from a user solution
(i.e., passed in by the user via XPRS_msp_loadsol or
XPRS_msp_readslxsol) being loaded into an attached problem and the
resulting "cleaned up" solution being loaded back into the MIP
solution pool. p. 65

MSP_SOL_ISUSERSOLUTION Whether or not the solution was passed in by the user (via
XPRS_msp_loadsol or XPRS_msp_readslxsol) or whether the solution
was loaded internally from an attached problem. p. 65

MSP_SOL_NONZEROS Number of non-zeros in the solution. p. 65

MSP_SOLPRB_INFCNT_BIN Number of binary variable MIP infeasibilities for the solution with
respect to the problem. p. 57

MSP_SOLPRB_INFCNT_COLUMN Number of column bound infeasibilities for the solution with
respect to the problem. p. 57

MSP_SOLPRB_INFCNT_DELAYEDROW Number of delayed row infeasibilities for the solution with
respect to the problem. p. 57

MSP_SOLPRB_INFCNT_INT Number of integer variable MIP infeasibilities for the solution with
respect to the problem. p. 57

MSP_SOLPRB_INFCNT_MIP Number of MIP infeasibilities that the solution has with respect to the
problem. p. 57

MSP_SOLPRB_INFCNT_PI Number of partial integer variable MIP infeasibilities for the solution
with respect to the problem. p. 58

MSP_SOLPRB_INFCNT_PRIMAL Number of primal infeasibilities that the solution has with respect to
the problem. This count includes the column bound infeasibilities and
both the row and delayed row infeasibilities. p. 58

MSP_SOLPRB_INFCNT_SC Number of semi-continuous variable MIP infeasibilities for the solution
with respect to the problem. p. 58

Fair Isaac Corporation Confidential and Proprietary Information 54

MSP Attributes

MSP_SOLPRB_INFCNT_SET1 Number of SOS1 set MIP infeasibilities for the solution with respect to
the problem. p. 58

MSP_SOLPRB_INFCNT_SET2 Number of SOS2 set MIP infeasibilities for the solution with respect to
the problem. p. 58

MSP_SOLPRB_INFCNT_SI Number of semi-continuous integer variable MIP infeasibilities for the
solution with respect to the problem. p. 58

MSP_SOLPRB_INFCNT_SLACK Number of rows of the problem that are violated for the solution.
p. 59

MSP_SOLPRB_INFEASCOUNT The sum of the MIP and primal infeasibility counts for the solution
with respect to the problem. p. 59

MSP_SOLPRB_INFMAX_BIN Maximum binary variable MIP infeasibility for the solution with respect
to the problem. p. 59

MSP_SOLPRB_INFMAX_COLUMN Maximum column bound infeasibility for the solution with respect
to the problem. p. 59

MSP_SOLPRB_INFMAX_DELAYEDROW Maximum delayed row infeasibility for the solution with
respect to the problem. p. 59

MSP_SOLPRB_INFMAX_INT Maximum integer variable MIP infeasibility for the solution with
respect to the problem. p. 59

MSP_SOLPRB_INFMAX_PI Maximum partial integer variable MIP infeasibility for the solution
with respect to the problem. p. 60

MSP_SOLPRB_INFMAX_SC Maximum semi-continuous variable MIP infeasibility for the solution
with respect to the problem. p. 60

MSP_SOLPRB_INFMAX_SET1 Maximum variable value causing a SOS1 set MIP infeasibility. p. 60

MSP_SOLPRB_INFMAX_SET2 Maximum variable value causing a SOS2 set MIP infeasibility. p. 60

MSP_SOLPRB_INFMAX_SI Maximum semi-continuous integer variable MIP infeasibility for the
solution with respect to the problem. p. 60

MSP_SOLPRB_INFMAX_SLACK Maximum row infeasibility for the solution with respect to the
problem. p. 60

MSP_SOLPRB_INFMXI_BIN Index of a column achieving the maximum binary variable MIP
infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_COLUMN Index of a column achieving the maximum column bound
infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_DELAYEDROW Index of a delayed row achieving the maximum delayed row
infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_INT Index of a column achieving the maximum integer variable MIP
infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_PI Index of a column achieving the maximum partial integer variable MIP
infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_SC Index of a column achieving the maximum semi-continuous variable
MIP infeasibility for the solution with respect to the problem. p. 61

MSP_SOLPRB_INFMXI_SET1 Index of a set that has the maximum SOS1 set MIP infeasibility. p. 62

Fair Isaac Corporation Confidential and Proprietary Information 55

MSP Attributes

MSP_SOLPRB_INFMXI_SET2 Index of a set that has the maximum SOS2 set MIP infeasibility. p. 62

MSP_SOLPRB_INFMXI_SI Index of a column achieving the maximum semi-continuous integer
variable MIP infeasibility for the solution with respect to the problem.
p. 62

MSP_SOLPRB_INFMXI_SLACK Index of a row achieving the maximum row infeasibility for the
solution with respect to the problem. p. 62

MSP_SOLPRB_INFSUM_BIN Sum of binary variable MIP infeasibilities for the solution with respect
to the problem. p. 62

MSP_SOLPRB_INFSUM_COLUMN Sum of column bound infeasibilities for the solution with respect to
the problem. p. 62

MSP_SOLPRB_INFSUM_DELAYEDROW Sum of delayed row infeasibilities for the solution with respect
to the problem. p. 63

MSP_SOLPRB_INFSUM_INT Sum of integer variable MIP infeasibilities for the solution with respect
to the problem. p. 63

MSP_SOLPRB_INFSUM_MIP Sum of MIP infeasibilities that the solution has with respect to the
problem. p. 63

MSP_SOLPRB_INFSUM_PI Sum of partial integer variable MIP infeasibilities for the solution with
respect to the problem. p. 63

MSP_SOLPRB_INFSUM_PRIMAL Sum of primal infeasibilities that the solution has with respect to the
problem. This sum includes the column bound infeasibilities and both
the row and delayed row infeasibilities. p. 63

MSP_SOLPRB_INFSUM_SC Sum of semi-continuous variable MIP infeasibilities for the solution
with respect to the problem. p. 63

MSP_SOLPRB_INFSUM_SET1 Sum of SOS1 set MIP infeasibilities for the solution with respect to the
problem. p. 64

MSP_SOLPRB_INFSUM_SET2 Sum of SOS2 set MIP infeasibilities for the solution with respect to the
problem. p. 64

MSP_SOLPRB_INFSUM_SI Sum of semi-continuous integer variable MIP infeasibilities for the
solution with respect to the problem. p. 64

MSP_SOLPRB_INFSUM_SLACK Sum of row infeasibilities for the solution with respect to the
problem. p. 64

MSP_SOLPRB_OBJ Objective value of the solution with the problem. p. 64

MSP_SOLUTIONS The number of solutions stored by the MIP solution pool. p. 64

MSP_PRB_FEASIBLESOLS

Description Number of feasible solutions for the problem.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 56

MSP Attributes

MSP_PRB_VALIDSOLS

Description Number of solutions with the same number of columns as the problem.

Type Integer

MSP_SOLPRB_INFCNT_BIN

Description Number of binary variable MIP infeasibilities for the solution with respect to the
problem.

Type Integer

MSP_SOLPRB_INFCNT_COLUMN

Description Number of column bound infeasibilities for the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFCNT_DELAYEDROW

Description Number of delayed row infeasibilities for the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFCNT_INT

Description Number of integer variable MIP infeasibilities for the solution with respect to the
problem.

Type Integer

MSP_SOLPRB_INFCNT_MIP

Description Number of MIP infeasibilities that the solution has with respect to the problem.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 57

MSP Attributes

MSP_SOLPRB_INFCNT_PI

Description Number of partial integer variable MIP infeasibilities for the solution with respect to the
problem.

Type Integer

MSP_SOLPRB_INFCNT_PRIMAL

Description Number of primal infeasibilities that the solution has with respect to the problem. This
count includes the column bound infeasibilities and both the row and delayed row
infeasibilities.

Type Integer

MSP_SOLPRB_INFCNT_SC

Description Number of semi-continuous variable MIP infeasibilities for the solution with respect to
the problem.

Type Integer

MSP_SOLPRB_INFCNT_SET1

Description Number of SOS1 set MIP infeasibilities for the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFCNT_SET2

Description Number of SOS2 set MIP infeasibilities for the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFCNT_SI

Description Number of semi-continuous integer variable MIP infeasibilities for the solution with
respect to the problem.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 58

MSP Attributes

MSP_SOLPRB_INFCNT_SLACK

Description Number of rows of the problem that are violated for the solution.

Type Integer

MSP_SOLPRB_INFEASCOUNT

Description The sum of the MIP and primal infeasibility counts for the solution with respect to the
problem.

Type Integer

MSP_SOLPRB_INFMAX_BIN

Description Maximum binary variable MIP infeasibility for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFMAX_COLUMN

Description Maximum column bound infeasibility for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFMAX_DELAYEDROW

Description Maximum delayed row infeasibility for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFMAX_INT

Description Maximum integer variable MIP infeasibility for the solution with respect to the problem.

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 59

MSP Attributes

MSP_SOLPRB_INFMAX_PI

Description Maximum partial integer variable MIP infeasibility for the solution with respect to the
problem.

Type Double

MSP_SOLPRB_INFMAX_SC

Description Maximum semi-continuous variable MIP infeasibility for the solution with respect to the
problem.

Type Double

MSP_SOLPRB_INFMAX_SET1

Description Maximum variable value causing a SOS1 set MIP infeasibility.

Type Double

MSP_SOLPRB_INFMAX_SET2

Description Maximum variable value causing a SOS2 set MIP infeasibility.

Type Double

MSP_SOLPRB_INFMAX_SI

Description Maximum semi-continuous integer variable MIP infeasibility for the solution with
respect to the problem.

Type Double

MSP_SOLPRB_INFMAX_SLACK

Description Maximum row infeasibility for the solution with respect to the problem.

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 60

MSP Attributes

MSP_SOLPRB_INFMXI_BIN

Description Index of a column achieving the maximum binary variable MIP infeasibility for the
solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_COLUMN

Description Index of a column achieving the maximum column bound infeasibility for the solution
with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_DELAYEDROW

Description Index of a delayed row achieving the maximum delayed row infeasibility for the
solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_INT

Description Index of a column achieving the maximum integer variable MIP infeasibility for the
solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_PI

Description Index of a column achieving the maximum partial integer variable MIP infeasibility for
the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_SC

Description Index of a column achieving the maximum semi-continuous variable MIP infeasibility for
the solution with respect to the problem.

Fair Isaac Corporation Confidential and Proprietary Information 61

MSP Attributes

Type Integer

MSP_SOLPRB_INFMXI_SET1

Description Index of a set that has the maximum SOS1 set MIP infeasibility.

Type Integer

MSP_SOLPRB_INFMXI_SET2

Description Index of a set that has the maximum SOS2 set MIP infeasibility.

Type Integer

MSP_SOLPRB_INFMXI_SI

Description Index of a column achieving the maximum semi-continuous integer variable MIP
infeasibility for the solution with respect to the problem.

Type Integer

MSP_SOLPRB_INFMXI_SLACK

Description Index of a row achieving the maximum row infeasibility for the solution with respect to
the problem.

Type Integer

MSP_SOLPRB_INFSUM_BIN

Description Sum of binary variable MIP infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_COLUMN

Description Sum of column bound infeasibilities for the solution with respect to the problem.

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 62

MSP Attributes

MSP_SOLPRB_INFSUM_DELAYEDROW

Description Sum of delayed row infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_INT

Description Sum of integer variable MIP infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_MIP

Description Sum of MIP infeasibilities that the solution has with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_PI

Description Sum of partial integer variable MIP infeasibilities for the solution with respect to the
problem.

Type Double

MSP_SOLPRB_INFSUM_PRIMAL

Description Sum of primal infeasibilities that the solution has with respect to the problem. This sum
includes the column bound infeasibilities and both the row and delayed row
infeasibilities.

Type Double

MSP_SOLPRB_INFSUM_SC

Description Sum of semi-continuous variable MIP infeasibilities for the solution with respect to the
problem.

Type Double

Fair Isaac Corporation Confidential and Proprietary Information 63

MSP Attributes

MSP_SOLPRB_INFSUM_SET1

Description Sum of SOS1 set MIP infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_SET2

Description Sum of SOS2 set MIP infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_INFSUM_SI

Description Sum of semi-continuous integer variable MIP infeasibilities for the solution with respect
to the problem.

Type Double

MSP_SOLPRB_INFSUM_SLACK

Description Sum of row infeasibilities for the solution with respect to the problem.

Type Double

MSP_SOLPRB_OBJ

Description Objective value of the solution with the problem.

Type Double

Note For infeasible solutions, the objective value returned is infinity. Calling XPRSfixglobals
(p.168 of the Optimizer Reference Manual) will invalidate a solution in the pool if any
of the global variables in the solution are rounded and if this happens the objective will
be returned as infinity.

MSP_SOLUTIONS

Description The number of solutions stored by the MIP solution pool.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 64

MSP Attributes

MSP_SOL_BITFIELDSSYS

Description A bit map with fields containing the logical attribute values for the solution e.g.,
MSP_SOL_ISREPROCESSEDUSERSOLUTION and MSP_SOL_ISUSERSOLUTION.

Type Integer

MSP_SOL_COLS

Description Number of columns in the solution.

Type Integer

MSP_SOL_ISREPROCESSEDUSERSOLUTION

Description Whether or not the solution arises from a user solution (i.e., passed in by the user via
XPRS_msp_loadsol or XPRS_msp_readslxsol) being loaded into an attached problem and
the resulting "cleaned up" solution being loaded back into the MIP solution pool.

Type Integer

Values 0 The solution was not derived from a user solution i.e., it is a user solution or it is
a solution found by an attached XPRSprob problem.

1 The solution was derived from a user solution.

MSP_SOL_ISUSERSOLUTION

Description Whether or not the solution was passed in by the user (via XPRS_msp_loadsol or
XPRS_msp_readslxsol) or whether the solution was loaded internally from an attached
problem.

Type Integer

Values 0 The solution was loaded internally from an attached problem.

1 The solution was loaded by the user via XPRS_msp_loadsol or
XPRS_msp_readslxsol.

MSP_SOL_NONZEROS

Description Number of non-zeros in the solution.

Type Integer

Fair Isaac Corporation Confidential and Proprietary Information 65

II. MIP Solution Enumerator

CHAPTER 5

Introduction

5.1 Overview

The MIP solution enumerator (XPRSmipsolenum) runs a customized MIP search on a user provided
problem (XPRSprob). The search is customized such that nodes are not cut-off by bounding and
integer solution nodes are branched. The MIP solution enumerator marshals the solutions found
to storage in a user provided MIP solution pool (XPRSmipsolpool).

In general the MIP solution enumerator is useful for generating a set of solutions for a problem.
In particular, the MIP solution enumerator can be used to generate the n-best solutions to a
problem. The user will typically be interested in such a set when there are constraints and/or costs
not reflected in the problem and the user wants a set of solutions from which a final solution can
be selected that best meets the external constraints and objective.

5.2 Applications: N-Best Solutions Example

A typical use of the MIP solution enumerator is to generate the set of n-best solutions. The
following example shows how this can be done:-

#include <stdio.h>
#include "xprs.h"
#include "xprs_mse_defaulthandler.h"

int main(int argc, char **argv)
{

XPRSprob prob;
XPRSmipsolpool msp;
XPRSmipsolenum mse;
int nMaxSols;
int i, j, nSols, nCols, iSolutionId, iSolutionIdStatus;
double dObj, dSol;
int iPresolveOps;
const char *sProblem = argv[1];

XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSreadprob(prob, sProblem, "");

XPRS_msp_create(&msp);

XPRS_mse_create(&mse);

XPRSgetintattrib(prob, XPRS_COLS, &nCols);

/* Disable heuristics to avoid duplicate solutions being stored */
XPRSsetintcontrol(prob, XPRS_HEURSTRATEGY, 0);

Fair Isaac Corporation Confidential and Proprietary Information 67

Introduction

XPRSgetintcontrol(prob, XPRS_PRESOLVEOPS, &iPresolveOps);
iPresolveOps &= ~(1 << 3); /* Disable dual reduction operations */
iPresolveOps &= ~(1 << 5); /* Disable duplicate column removal */
XPRSsetintcontrol(prob, XPRS_PRESOLVEOPS, iPresolveOps);

/* Run the enumeration */
nMaxSols = 10;
XPRS_mse_maxim(mse, prob, msp, XPRS_mse_defaulthandler, NULL, &nMaxSols);

/* Print out the solutions found */
XPRS_mse_getintattrib(mse, XPRS_MSE_SOLUTIONS, &nSols);
for(i = 1; i <= nSols; i++) {

XPRS_mse_getsollist(mse, XPRS_MSE_METRIC_MIPOBJECT, i, i, &iSolutionId, NULL, NULL);
XPRS_mse_getsolmetric(mse, iSolutionId, &iSolutionIdStatus, XPRS_MSE_METRIC_MIPOBJECT, &dObj);
printf("--------\n%3i = %12.5f\n", i, dObj);
for(j = 0; j < nCols; j++) {

XPRS_msp_getsol(msp, iSolutionId, &iSolutionIdStatus, &dSol, j, j, NULL);
printf("%3i = %12.5f\n", j, dSol);

}
}

XPRS_msp_destroy(msp);
XPRSdestroyprob(prob);
XPRS_mse_destroy(mse);

XPRSfree();
}

In the example we use the XPRS_mse_defaulthandler function to manage the storage of at most
nMaxSols (= 10) solutions. The code for the XPRS_mse_defaulthandler callback is provided in the
FICO Xpress Optimizer. Using the default control settings when a solution is found and there are
nMaxSols (= 10) solutions stored the XPRS_mse_defaulthandler callback will either reject the
current solution or delete the worst existing solution depending on their objective values (when
there is a tie the current solution is rejected). In this way the MIP solution enumerator will
generate the set of n-best solutions.

It is important to note that duplicate solutions can potentially be stored in the cases where the
MIP solution pool contains initial solutions prior to the enumeration run or if heuristics are
activated in the XPRSprob. In the example we have disabled heuristics and the MIP solution pool
does not contain any solutions prior to the enumeration run so there is no need to check for
duplicates. The management of duplicate solutions is left to the MIP solution pool functionality
which is discussed in Duplicate Solutions.

It is also important to note that it is sometimes necessary to disable certain FICO Xpress Optimizer
presolve operations (i.e., setting the integer control PRESOLVEOPS in the example) to avoid
spurious deletion of solutions from the enumeration search space. This is discussed in the
following section Presolve considerations.

In the event that initial solutions are contained in the MIP solution pool prior to the enumeration
run the MIP solution enumerator will load the set of feasible solutions (with the same number of
columns as the XPRSprob) from the initial set of solutions as if they were found during the MIP
search on the XPRSprob. Note that new versions of these solutions are created and the original
versions are deleted from the MIP solution pool.

Once the enumeration run terminates the example demonstrates simple retrieval of the solution
information. Note that the solution values are stored in the MIP solution pool and the metric
information for the solutions is stored in the MIP solution enumerator.

5.3 Presolve considerations

The default control settings of the FICO Xpress Optimizer presolver assume that the user is

Fair Isaac Corporation Confidential and Proprietary Information 68

Introduction

satisfied if the MIP search finds a single solution with the best objective. The choice of the default
presolve settings attempts to improve the efficiency of this type of search by cutting off MIP
solutions from the feasible region that are either degenerate (i.e., that have equivalent
representations with different feasible values of the variables) or dominated (i.e., that can be
deduced to be worse than solutions contained in the remaining feasible region) or symmetric to
another solution. The user must take care to disable these default presolve operations when
solutions may be removed from the enumeration search space that are of interest. Also, the user
should be aware that disabling these presolve operations can significantly increase the
enumeration runtime.

Presolve operations removing dominated MIP solutions are collectively referred to as dual
reduction operations. To disable duplicate column detection the user must unset bit 5 of the
integer control PRESOLVEOPS. To disable all dual reduction operations the user must unset bit 3 of
PRESOLVEOPS. See the Applications: N-Best Solutions Example for an example of how to unset
these bits.

To disable FICO Xpress Optimizer from removing symmetric solutions, set the SYMMETRY control to
0.

5.4 Basic customization

By customizing the controls for the XPRS_mse_defaulthandler callback (i.e., setting
MSE_CALLBACKCULLSOLS_MIPOBJECT and/or MSE_CALLBACKCULLSOLS_DIVERSITY) the user can modify
the behavior of the callback when the number of solutions exceeds the maximum. The user can
delete p solutions based on the MIP objective values and then delete q of the remaining nMaxSols
- p solutions based on the diversity metric (see below). The current solution will be rejected if it is
no better than any of the solutions that were deleted. In this way the user has simple control of
how the solution set is generated.

In addition to the MIP objective the MIP solution enumerator provides a metric for solutions
based on the ’diversity’ of the solution with respect to the other stored solutions. The diversity
metric for a solution is the sum of difference metrics between the solution and the other stored
solutions. By default the difference value between two solutions is calculated by the MIP solution
enumerator using a simple difference metric that considers only the MIP entities in the solution.
Note that for the MIP solution enumerator to calculate the diversity metrics a problem needs to
be attached to the MIP solution pool (see ’Duplicate solutions’). This is because the global
structure of the solution variables is required for the difference metric calculation. The user will
typically attach to the MIP solution pool the XPRSprob to be used to run the enumeration. Finally,
note that the user can provide their own difference metric calculation for solution pairs in a
callback defined with a call to XPRS_mse_setcbgetsolutiondiff (in this case there does not need
to be a problem attached to the MIP solution pool).

5.5 Advanced customization

By providing a customized version of the XPRS_mse_defaulthandler the user can define a
modified objective value for solutions. Typically this value reflects the ’true’ objective of the
solution in cases where the MIP objective does not completely model the user’s problem. The
modified objective value is stored with the solution and can be used to obtain a ranked order of
solutions in the case where the user wishes to delete solutions based on this metric (see
XPRS_mse_getcullchoice). Also with a customized callback the user is able to arbitrarily accept or
reject the current solution. Typically the user will want to do this in cases where the constraints
and/or objective of the MIP problem do not completely model the user’s problem.

From the customized XPRS_mse_defaulthandler callback the user is able to set a return value that

Fair Isaac Corporation Confidential and Proprietary Information 69

Introduction

causes the MIP solution enumerator to set the cut-off for the search to the worst MIP objective of
the active solutions. This can be useful to improve the run time of the enumeration. Note that
the default n-best search uses this to improve the enumeration performance.

5.6 Data Model

The following UML diagram outlines the relationships the XPRSmipsolenum has with some other
data entities.

Figure 5.1:

Starting from the top left the diagram shows the XPRSprob referenced by the XPRSmipsolenum in
the top middle. The XPRSmipsolenum references the XPRSprob only for the duration of the
enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim and XPRS_mse_opt. The
XPRSmipsolenum sets certain controls on the XPRSprob, registers an internal callback to receive
solutions found during the enumeration and calls the relevant optimization function to execute
the enumeration.

Moving to the top right the diagram shows the XPRSmipsolpool referenced by the
XPRSmipsolenum. The XPRSmipsolenum references the XPRSmipsolpool only for the duration of the
enumeration-run routines (in the same way as the XPRSprob).

While running the enumeration the XPRSmipsolenum maintains storage of additional information
for each solution found that cannot be stored by the XPRSmipsolpool. The additional information
is the MIP objective value (MIPObject) of the solution, any user-defined objective function value
(ModObject) for the solution and a diversity-metric (Diversity) for the solution that measures
how different the solution is with respect to the other solutions in storage. As indicated by the
dashed line in the diagram, the solution ID is used to link the information stored separately in the
XPRSmipsolenum and the XPRSmipsolpool.

Since a parallel storage of solution information is required the XPRSmipsolenum marshals the
storage of solutions to the XPRSmipsolpool. To do this the XPRSmipsolenum registers an internal
callback with the XPRSmipsolpool to track when solutions are deleted by the user from the
XPRSmipsolpool. It is also necessary that the XPRSmipsolenum loads the solutions found during the
enumeration directly into the XPRSmipsolpool overriding the automatic loading of solutions from
the XPRSprob to XPRSmipsolpool in the situation where the user has attached the XPRSprob to the
XPRSmipsolpool prior to the enumeration run.

Once the enumeration run terminates the MIP solutions are stored in the XPRSmipsolpool and the
additional information for the solutions is stored in the XPRSmipsolenum. At this point the
solution information is linked only by the solution ID.

Fair Isaac Corporation Confidential and Proprietary Information 70

CHAPTER 6

MSE Functions

XPRS_mse_addcbmsghandler Declares an output callback function, called every time a line of
message text is output by the MIP solution enumerator. This callback
function will be called in addition to any output callbacks already
added by XPRS_mse_addcbmsghandler. p. 73

XPRS_mse_create Sets up a new MIP solution enumerator object. p. 74

XPRS_mse_defaulthandler A routine defined in xprs_mse_defaulthandler.h intended only to be
passed as a callback into the enumeration-run routines
XPRS_mse_minim, XPRS_mse_maxim and XPRS_mse_opt. When used to
run an enumeration this routine is called each time a solution is found
in the enumeration. This routine provides simple functionality to
manage common strategies for keeping a ’good’ set of solutions found
during enumeration and controlling the enumeration run e.g., n-best
solutions. The user may wish to base any customized version of the
callback on the contents of this routine. p. 75

XPRS_mse_destroy Destroys a MIP solution enumerator object and its resources. The
object will generally be created by a call to the function
XPRS_mse_create. p. 76

XPRS_mse_getcbmsghandler Get the output callback function, as set by
XPRS_mse_setcbmsghandler. p. 77

XPRS_mse_getcullchoice Generates a list of solution ids for solutions recommended to be
dropped assuming that the given number of solutions are required to
be dropped and the solutions are to be compared with each other
with respect to the given metric. This function also decides whether a
given, new solution defined by its metric value (or its solution values)
should also be dropped given that the returned list of solutions are
recommended to be dropped. p. 78

XPRS_mse_getdblattrib Provides read access to the values of double attributes associated with
the MIP solution enumerator. p. 79

XPRS_mse_getdblcontrol Retrieves the value of a given double control parameter. p. 80

XPRS_mse_getintattrib Provides read access to the values of integer attributes associated with
the MIP solution enumerator. p. 81

XPRS_mse_getintcontrol Retrieves the value of a given integer control parameter. p. 82

XPRS_mse_getlasterror Gets the last error message. p. 83

XPRS_mse_getsolbasename Gets the name currently used as a prefix for solutions found during
the enumeration run. p. 84

Fair Isaac Corporation Confidential and Proprietary Information 71

MSE Functions

XPRS_mse_getsollist Returns a list of solution ids of solutions found during the
enumeration. The list is sorted by the value of some attribute of the
solutions e.g., the MIP objective value. p. 85

XPRS_mse_getsolmetric Gets the value of a metric for a solution. p. 86

XPRS_mse_maxim One of three routines to run the enumeration. This routine starts the
enumeration run on the problem by calling XPRSmaxim. p. 87

XPRS_mse_minim One of three routines to run the enumeration. This routine starts the
enumeration run on the problem by calling XPRSminim. p. 88

XPRS_mse_opt One of three routines to run the enumeration. This routine starts the
enumeration run on the problem by calling XPRSmipoptimize. p. 89

XPRS_mse_removecbmsghandler Removes an output callback function previously added by
XPRS_mse_addcbmsghandler. The specified callback function will no
longer be called after it has been removed. p. 90

XPRS_mse_setcbgetsolutiondiff Declares a user-defined solution difference calculation routine,
called each time a new pair of solutions are required to have a
difference metric calculated. This functionality is required when the
MSE_METRIC_DIVERSITY metric is applied to the set of stored solutions
with a call to XPRS_mse_getcullchoice and XPRS_mse_getsolmetric.
p. 91

XPRS_mse_setcbmsghandler Declares an output callback function, called every time a line of
message text is output by a MIP solution enumerator object. p. 93

XPRS_mse_setdblcontrol Sets the value of a given double control parameter. p. 94

XPRS_mse_setintcontrol Sets the value of a given integer control parameter. p. 95

XPRS_mse_setsolbasename Sets the name to be used as a prefix for solutions found during the
enumeration run. p. 96

Fair Isaac Corporation Confidential and Proprietary Information 72

MSE Functions

XPRS_mse_addcbmsghandler

Purpose
Declares an output callback function, called every time a line of message text is output by the MIP
solution enumerator. This callback function will be called in addition to any output callbacks
already added by XPRS_mse_addcbmsghandler.

Synopsis
int XPRS_CC XPRS_mse_addcbmsghandler(XPRSmipsolenum mse, int (XPRS_CC *f_msghandler)

(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void * p, int priority);

Arguments
mse The current MIP solution enumerator

f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,
vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use a NULL value to cancel a
callback function.

vXPRSObject The object sending the message. Use XPRSgetobjecttypename (p.213 of the
Optimizer Reference Manual) to get the name of the object type.

vUserContext The user-defined object passed to the callback function.

vSystemThreadId The system id of the thread sending the message caste to a void *.

sMsg A null terminated character array (string) containing the message, which may simply
be a new line. When the callback is called for the first time sMsg will be a NULL
pointer.

iMsgType Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value means the callback is being called for the first time.

iMsgNumber The number associated with the message. If the message is an error or a warning
then you can look up the number in the section Optimizer Error and Warning
Messages for advice on what it means and how to resolve the associated issue.

p A user-defined object to be passed to the callback function.

priority An integer that determines the order in which multiple output callbacks will be
invoked. The callback added with a higher priority will be called before a callback
with a lower priority. Set to 0 if not required.

Further information
To send messages to a log file the built in message handler XPRSlogfilehandler can be used. This
can be done with:

XPRS_mse_addcbmsghandler(msp, XPRSlogfilehandler, "log.txt");

Related topics
XPRS_mse_removecbmsghandler,XPRSgetobjecttypename (p.213 of the Optimizer Reference Manual
).

Fair Isaac Corporation Confidential and Proprietary Information 73

MSE Functions

XPRS_mse_create

Purpose
Sets up a new MIP solution enumerator object.

Synopsis
int XPRS_CC XPRS_mse_create(XPRSmipsolenum * mse)

Argument
mse Pointer to a variable holding the new MIP solution enumerator.

Further information

1. Calls to XPRS_mse_create must be made after the call to XPRSinit (p.252 of the Optimizer
Reference Manual).

2. All MIP solution enumerators created using a call to XPRS_mse_create should be disposed of with
a call to XPRS_mse_destroy.

Related topics
XPRSinit (p.252 of the Optimizer Reference Manual), XPRS_mse_destroy.

Fair Isaac Corporation Confidential and Proprietary Information 74

MSE Functions

XPRS_mse_defaulthandler

Purpose
A routine defined in xprs_mse_defaulthandler.h intended only to be passed as a callback into the
enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim and XPRS_mse_opt. When used to run
an enumeration this routine is called each time a solution is found in the enumeration. This
routine provides simple functionality to manage common strategies for keeping a ’good’ set of
solutions found during enumeration and controlling the enumeration run e.g., n-best solutions.
The user may wish to base any customized version of the callback on the contents of this routine.

Synopsis
int XPRS_CC XPRS_mse_defaulthandler(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool

msp, void *ctx, int *const nMaxSols, const double *const x, const int nCols,
const double dMipObject, double *const dModifiedObject, int *const bRejectSoln,
int *const bUpdateMipAbsCutOffOnCurrentSet)

Arguments
mse The current MIP solution enumerator.

prob The problem used to enumerate solutions.

msp The MIP solution pool used to store the solutions found during enumeration.

ctx The user-defined object passed into the enumeration-run routine that started this run
(i.e., XPRS_mse_minim, XPRS_mse_maxim or XPRS_mse_opt).

nMaxSols The integer pointer passed into the enumeration-run routine that started this run
(i.e., XPRS_mse_minim, XPRS_mse_maxim or XPRS_mse_opt). Note that this pointer is only
used by the callback and is intended to store the maximum number of solutions the
user is prepared to capture during the enumeration.

x A dense solution array of doubles containing the nCols solution values of the new
solution.

nCols The number elements in x. This is the same as the column dimension of the problem
when the enumeration was started.

dMipObject A double with the value of the MIP objective of the solution.

dModifiedObject A pointer to a double that contains, on entry to the routine, the MIP objective.
The user can assign it a new value that reflects the ’true’ objective of the solution in
cases where the MIP objective does not completely model the user’s problem. The
returned value is stored as the MSE_METRIC_MODOBJECT metric of the solution.

bRejectSoln A pointer to an integer that is at value zero on entry to the routine. The solution
will not be stored if the user returns this variable at a non-zero value.

bUpdateMipAbsCutOffOnCurrentSet A pointer to an integer that is at value zero on entry to the
routine. If the user returns this variable with a non-zero value then the MIP solution
enumerator will update the MIPABSCUTOFF (p.422 of the Optimizer Reference Manual)
of the problem to reflect the worst MIP objective of the stored solutions (including
the new solution if it is not rejected).

Further information
This simple routine uses only four different API function calls. These calls are to the MIP solution
enumerator routines XPRS_mse_getcullchoice, XPRS_mse_getintattrib and
XPRS_mse_getintcontrol and the MIP solution pool routine XPRS_msp_delsol.

Related topics
XPRS_mse_minim, XPRS_mse_maxim, XPRS_mse_opt, XPRS_mse_getcullchoice,
XPRS_mse_getintattrib, XPRS_mse_getintcontrol, XPRS_msp_delsol.

Fair Isaac Corporation Confidential and Proprietary Information 75

MSE Functions

XPRS_mse_destroy

Purpose
Destroys a MIP solution enumerator object and its resources. The object will generally be created
by a call to the function XPRS_mse_create.

Synopsis
int XPRS_CC XPRS_mse_destroy(XPRSmipsolenum mse)

Argument
mse MIP solution enumerator to be destroyed.

Related topics
XPRS_mse_create.

Fair Isaac Corporation Confidential and Proprietary Information 76

MSE Functions

XPRS_mse_getcbmsghandler

Purpose
Get the output callback function, as set by XPRS_mse_setcbmsghandler.

Synopsis
int XPRS_CC XPRS_mse_getcbmsghandler(XPRSmipsolenum mse, int (XPRS_CC

**r_f_msghandler)
(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void **object);

Arguments
mse The current MIP solution enumerator

r_f_msghandler Pointer to the memory where the callback function will be returned.

Related topics
XPRS_mse_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 77

MSE Functions

XPRS_mse_getcullchoice

Purpose
Generates a list of solution ids for solutions recommended to be dropped assuming that the given
number of solutions are required to be dropped and the solutions are to be compared with each
other with respect to the given metric. This function also decides whether a given, new solution
defined by its metric value (or its solution values) should also be dropped given that the returned
list of solutions are recommended to be dropped.

Synopsis
int XPRS_CC XPRS_mse_getcullchoice(XPRSmipsolenum mse, int iMetricId, int

cull_sol_id_list[], int nMaxSolsToCull, int * nSolsToCull, double
dNewSolMetric, const double x[], int nCols, int * bRejectSoln)

Arguments
mse The current MIP solution enumerator.

iMetricId Id of metric for which the solutions should be compared e.g., the MIP objective value
is used when MSE_METRIC_MIPOBJECT is passed down. A full list of all available metrics
may be found in Chapter 8, or from the list in the xprs.h header file.

cull_sol_id_list Integer array where the solution ids will be returned. May be NULL if not
required.

nMaxSolsToCull The maximum number of solutions required to be returned in
cull_sol_id_list.

nSolsToCull Pointer to an integer where the number of solution ids that were written to
cull_sol_id_list is returned. May be NULL if not required.

dNewSolMetric The metric value for the new solution for the metric identified by iMetricId. It is
assumed that the user wishes to decide whether or not to keep the new solution given
that solutions in the returned list cull_sol_id_list are recommended to be dropped.

x The solution values of the new solution. The diversity metric (MSE_METRIC_DIVERSITY)
requires the solution values in order to calculate the new solution’s metric with
respect to the currently stored solutions. Other metrics simply use dNewSolMetric and
do not require the solution values. May be NULL if not required.

nCols The number of columns in the solution array x. This must be the same as the number
of (initial) columns in the enumeration problem.

bRejectSoln If this is passed down as NULL or if its value is non-zero then the given new
solution is ignored.

Further information

1. If cull_sol_id_list is NULL or nMaxSolsToCull is zero or nSolsToCull is NULL (i.e., a list of
solution ids cannot be returned) then the routine simply decides whether or not to reject the new
solution based on the assumption that no currently existing solutions are to be dropped.

2. The user can drop solutions by calling XPRS_msp_delsol on the MIP solution pool being used by
the enumerator.

3. To call the routine ignoring the new solution the user can pass the argument bRejectSoln as
NULL. Note that if the new solution is not to be ignored then the user must pass bRejectSoln as
non-NULL with an initial value of zero.

Related topics
XPRS_msp_delsol.

Fair Isaac Corporation Confidential and Proprietary Information 78

MSE Functions

XPRS_mse_getdblattrib

Purpose
Provides read access to the values of double attributes associated with the MIP solution
enumerator.

Synopsis
int XPRS_CC XPRS_mse_getdblattrib(XPRSmipsolenum mse, int iAttribId, double * Val)

Arguments
mse The current MIP solution enumerator.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes
may be found in Chapter 8, or from the list in the xprs.h header file.

Val Pointer to an double where the value of the attribute will be returned.

Related topics
XPRS_mse_getintattrib.

Fair Isaac Corporation Confidential and Proprietary Information 79

MSE Functions

XPRS_mse_getdblcontrol

Purpose
Retrieves the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_mse_getdblcontrol(XPRSmipsolenum mse, int iControlId, double * Val)

Arguments
mse The current MIP solution enumerator.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 7, or from the list in the xprs.h header file.

Val Pointer to a double where the value of the control will be returned.

Related topics
XPRS_mse_getintcontrol, XPRS_mse_setdblcontrol, XPRS_mse_setintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 80

MSE Functions

XPRS_mse_getintattrib

Purpose
Provides read access to the values of integer attributes associated with the MIP solution
enumerator.

Synopsis
int XPRS_CC XPRS_mse_getintattrib(XPRSmipsolenum mse, int iAttribId, int * Val)

Arguments
mse The current MIP solution enumerator.

iAttribId Id of attribute whose value is to be returned. A full list of all available attributes
may be found in Chapter 8, or from the list in the xprs.h header file.

Val Pointer to an integer where the value of the attribute will be returned.

Related topics
XPRS_mse_getdblattrib.

Fair Isaac Corporation Confidential and Proprietary Information 81

MSE Functions

XPRS_mse_getintcontrol

Purpose
Retrieves the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_mse_getintcontrol(XPRSmipsolenum mse, int iControlId, int * Val)

Arguments
mse The current MIP solution enumerator.

iControlId Id of control whose value is to be returned. A full list of all available controls may
be found in Chapter 7, or from the list in the xprs.h header file.

Val Pointer to a integer where the value of the control will be returned.

Related topics
XPRS_mse_getdblcontrol, XPRS_mse_setdblcontrol, XPRS_mse_setintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 82

MSE Functions

XPRS_mse_getlasterror

Purpose
Gets the last error message.

Synopsis
int XPRS_CC XPRS_mse_getlasterror(XPRSmipsolenum mse, int * iMsgNumber, char * msg,

int iStringBufferBytes, int * iBytesInInternalString)

Arguments
mse The current MIP solution enumerator.

iMsgNumber A pointer to an integer to return the number of the last error message. Can be
NULL if not required. Refer to Chapter 11 of the Optimizer Reference Manual for a list
of possible error numbers, the errors and warnings that they indicate, and advice on
what they mean and how to resolve them.

msg A character buffer of length at least iStringBufferBytes to return the error message.
Can be NULL if not required.

iStringBufferBytes The length of the msg buffer.

iBytesInInternalString A pointer to an integer to return the number of bytes required to
store the error message. Can be NULL if not required.

Related topics
Chapter 11 of the Optimizer Reference Manual , XPRS_mse_setcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 83

MSE Functions

XPRS_mse_getsolbasename

Purpose
Gets the name currently used as a prefix for solutions found during the enumeration run.

Synopsis
int XPRS_CC XPRS_mse_getsolbasename(XPRSmipsolenum mse, char * sname, int

iStringBufferBytes, int * iBytesInInternalString)

Arguments
mse The current MIP solution enumerator.

sname A character buffer of length at least iStringBufferBytes to return the name. Can be
NULL if not required.

iStringBufferBytes The length of the sname buffer.

iBytesInInternalString A pointer to an integer to return the number of bytes required to
store the name. Can be NULL if not required.

Related topics
XPRS_mse_setsolbasename.

Fair Isaac Corporation Confidential and Proprietary Information 84

MSE Functions

XPRS_mse_getsollist

Purpose
Returns a list of solution ids of solutions found during the enumeration. The list is sorted by the
value of some attribute of the solutions e.g., the MIP objective value.

Synopsis
int XPRS_CC XPRS_mse_getsollist(XPRSmipsolenum mse, int iMetricId, int

iRankFirstIndex, int iRankLastIndex, int iSolutionIds[], int * nReturnedSolIds,
int * nSols)

Arguments
mse The current MIP solution enumerator.

iMetricId Id of the attribute whose value is used to rank the solution ids returned in the
iSolutionIds array e.g., the MIP objective value is used when MSE_METRIC_MIPOBJECT is
passed down. A full list of all available attributes may be found in Chapter 8, or from
the list in the xprs.h header file.

iRankFirstIndex Index (one-based) in the rank order of solutions for which the associated
solution’s id number, if there is a solution at this index, is to be returned in the first
element of array iSolutionIds. If iRankLastIndex > iRankFirstIndex then any
subsequent solutions in the rank ordering are to have their solution ids written to the
subsequent elements of iSolutionIds.

iRankLastIndex If iSolutionIds is non-NULL then at most iRankLastIndex -
iRankFirstIndex + 1 solution ids will be written to iSolutionIds. There will be fewer
solution ids written if iRankLastIndex is greater than the number of solutions
registered in the MIP solution enumerator.

iSolutionIds Integer array where the solution ids will be returned. May be NULL if not
required.

nReturnedSolIds Pointer to an integer where the number of solution ids that were available to
be written is returned. This number will always be less than or equal to
iRankLastIndex - iRankFirstIndex + 1. A value is returned for this parameter
regardless of whether iSolutionIds is passed as NULL. May be NULL if not required.

nSols Pointer to an integer where the total number of solution ids that could possibly be
written is returned. May be NULL if not required.

Related topics
XPRS_mse_opt, XPRS_mse_minim, XPRS_mse_maxim.

Fair Isaac Corporation Confidential and Proprietary Information 85

MSE Functions

XPRS_mse_getsolmetric

Purpose
Gets the value of a metric for a solution.

Synopsis
int XPRS_CC XPRS_mse_getsolmetric(XPRSmipsolenum mse, int iSolutionId, int *

iSolutionIdStatus, int iMetricId, double * dMetric)

Arguments
mse The current MIP solution enumerator.

iSolutionId The id of the solution for which the metric is to be returned.

iSolutionIdStatus Pointer to an int where the status of the iSolutionId will be returned. The
returned value is one of:
-2 Solution id does not exist;
-1 Solution with the given id is already deleted;
0 Solution id was for an active solution.

iMetricId Id of metric whose value is to be returned. A full list of all available metrics may be
found in Chapter 8, or from the list in the xprs.h header file.

dMetric Pointer to a double where the value of the metric will be returned.

Further information

1. The user will obtain the solution id iSolutionId from interaction with the MIP solution
enumerator via functions such as XPRS_mse_getsollist and XPRS_mse_getcullchoice.

2. If iSolutionId is passed in as less than or equal to zero then the routine returns the worst value
of the metric for the current set of solutions.

Related topics
XPRS_mse_getsollist, XPRS_mse_getcullchoice.

Fair Isaac Corporation Confidential and Proprietary Information 86

MSE Functions

XPRS_mse_maxim

Purpose
One of three routines to run the enumeration. This routine starts the enumeration run on the
problem by calling XPRSmaxim (p.285 of the Optimizer Reference Manual).

Synopsis
int XPRS_CC XPRS_mse_maxim(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool msp, int

(XPRS_CC * f_mse_handler)(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool
msp, void *ctx, int * const nMaxSols, const double * const x, const int nCols,
const double dMipObject, double * const dModifiedObject, int * const
bRejectSoln, int * const bUpdateMipAbsCutOffOnCurrentSet), void * p, int *
nMaxSols)

Further information
See XPRS_mse_minim for details.

Related topics
XPRSmaxim (p.285 of the Optimizer Reference Manual), XPRS_mse_minim, XPRS_mse_opt.

Fair Isaac Corporation Confidential and Proprietary Information 87

MSE Functions

XPRS_mse_minim

Purpose
One of three routines to run the enumeration. This routine starts the enumeration run on the
problem by calling XPRSminim (p.285 of the Optimizer Reference Manual).

Synopsis
int XPRS_CC XPRS_mse_minim(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool msp, int

(XPRS_CC * f_mse_handler)(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool
msp, void *ctx, int * const nMaxSols, const double * const x, const int nCols,
const double dMipObject, double * const dModifiedObject, int * const
bRejectSoln, int * const bUpdateMipAbsCutOffOnCurrentSet), void * p, int *
nMaxSols)

Arguments
mse The current MIP solution enumerator.

prob The problem used to enumerate solutions.

msp The MIP solution pool used to store the solutions found during enumeration.

f_mse_handler A callback function to handle the event that a MIP feasible solution is found in
the enumeration.

p The user-defined object to be passed to the callback function f_mse_handler.

nMaxSols A pointer to an integer to be passed to the callback function f_mse_handler (and used
only by the callback function) that is intended to store the maximum number of
solutions the user is prepared to capture during the enumeration.

Further information

1. Although the callback function f_mse_handler may be user-defined a simple version
(XPRS_mse_defaulthandler) is provided in the FICO Xpress Optimizer that can be used to manage
common strategies for keeping a ’good’ set of solutions found during enumeration and
controlling the enumeration run e.g., n-best solutions.

2. Any MIP feasible solutions to prob stored in the MIP solution pool prior to the enumeration run
are passed through the callback f_mse_handler as if they were found during the MIP search on
the prob. Note that new versions of these solutions are created and the original versions are
deleted from the MIP solution pool.

3. The integer pointer nMaxSols is used only by the callback function f_mse_handler.

Related topics
XPRSminim (p.285 of the Optimizer Reference Manual), XPRS_mse_maxim, XPRS_mse_opt,
XPRS_mse_defaulthandler.

Fair Isaac Corporation Confidential and Proprietary Information 88

MSE Functions

XPRS_mse_opt

Purpose
One of three routines to run the enumeration. This routine starts the enumeration run on the
problem by calling XPRSmipoptimize (p.287 of the Optimizer Reference Manual).

Synopsis
int XPRS_CC XPRS_mse_opt(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool msp, int

(XPRS_CC * f_mse_handler)(XPRSmipsolenum mse, XPRSprob prob, XPRSmipsolpool
msp, void *ctx, int * const nMaxSols, const double * const x, const int nCols,
const double dMipObject, double * const dModifiedObject, int * const
bRejectSoln, int * const bUpdateMipAbsCutOffOnCurrentSet), void * p, int *
nMaxSols)

Further information
See XPRS_mse_minim for details.

Related topics
XPRSmipoptimize (p.287 of the Optimizer Reference Manual), XPRS_mse_minim, XPRS_mse_maxim.

Fair Isaac Corporation Confidential and Proprietary Information 89

MSE Functions

XPRS_mse_removecbmsghandler

Purpose
Removes an output callback function previously added by XPRS_mse_addcbmsghandler. The
specified callback function will no longer be called after it has been removed.

Synopsis
int XPRS_CC XPRS_mse_removecbmsghandler(XPRSmipsolenum mse, int (XPRS_CC

*f_msghandler)
(XPRSobject vXPRSObject, void * vUserContext, void * vSystemThreadId, const
char * sMsg, int iMsgType, int iMsgNumber), void* object);

Arguments
mse The current MIP solution enumerator

f_msghandler The callback function to remove. If NULL then all output callback functions added
with the given user-defined object value will be removed.

object The object value that the callback was added with. If NULL, then the object value will
not be checked and all variable branching callbacks with the function pointer
f_chgbranch will be removed.

Related topics
XPRS_mse_addcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 90

MSE Functions

XPRS_mse_setcbgetsolutiondiff

Purpose
Declares a user-defined solution difference calculation routine, called each time a new pair of
solutions are required to have a difference metric calculated. This functionality is required when
the MSE_METRIC_DIVERSITY metric is applied to the set of stored solutions with a call to
XPRS_mse_getcullchoice and XPRS_mse_getsolmetric.

Synopsis
int XPRS_CC XPRS_mse_setcbgetsolutiondiff(XPRSmipsolenum mse, int (XPRS_CC *

f_mse_getsolutiondiff)(XPRSmipsolenum mse, void * vContext, int nCols, int
iSolutionId_1, int iElemCount_1, double dMipObj_1, const double * Vals_1, const
int * iSparseIndices_1, int iSolutionId_2, int iElemCount_2, double dMipObj_2,
const double * Vals_2, const int * iSparseIndices_2, double * dDiffMetric),
void * p)

Arguments
mse The current MIP solution enumerator.

f_mse_getsolutiondiff The callback function which takes 14 arguments, mse, vContext, nCols,
iSolutionId_1, iElemCount_1, dMipObj_1, Vals_1, iSparseIndices_1, iSolutionId_2,
iElemCount_2, dMipObj_2, Vals_2, iSparseIndices_2 and dDiffMetric. Use a NULL
value to cancel a callback function.

mse The current MIP solution enumerator.

vContext The user-defined object passed to the callback function.

nCols The number of columns in the solutions. This is the same as the column dimension of
the problem when the enumeration was started.

iSolutionId_1 The solution id of the first of the solution pair. This may be -1 in which case the
solution has not yet be stored in the MIP solution pool. This happens when the user
passes a new solution to XPRS_mse_getcullchoice using the diversity metric
(MSE_METRIC_DIVERSITY).

iElemCount_1 The number of non-zero elements in the first solution.

dMipObj_1 The MIP objective value of the first solution.

Vals_1 A sparse array of doubles of length iElemCount_1 containing the first solution’s
solution values.

iSparseIndices_1 A sparse array of integers of length iElemCount_1 containing the first
solution’s column indices.

iSolutionId_2 The solution id of the second of the solution pair.

iElemCount_2 The number of non-zero elements in the second solution.

dMipObj_2 The MIP objective value of the second solution.

Vals_2 A sparse array of doubles of length iElemCount_2 containing the second solution’s
solution values.

iSparseIndices_2 A sparse array of integers of length iElemCount_2 containing the second
solution’s column indices.

dDiffMetric A pointer to a double to return the metric of the difference between the two
solutions.

p A user-defined object to be passed to the callback function.

Further information
If the user does not provide this callback function then the MIP solution enumerator uses a simple
difference metric that considers only the MIP entities in the solution.

Fair Isaac Corporation Confidential and Proprietary Information 91

MSE Functions

Related topics
XPRS_mse_getcullchoice, XPRS_mse_getsolmetric.

Fair Isaac Corporation Confidential and Proprietary Information 92

MSE Functions

XPRS_mse_setcbmsghandler

Purpose
Declares an output callback function, called every time a line of message text is output by a MIP
solution enumerator object.

Synopsis
int XPRS_CC XPRS_mse_setcbmsghandler(XPRSmipsolenum mse, int (XPRS_CC

*f_msghandler)(XPRSobject vXPRSObject, void * vUserContext, void *
vSystemThreadId, const char * sMsg, int iMsgType, int iMsgNumber), void * p)

Arguments
mse The current MIP solution enumerator.

f_msghandler The callback function which takes six arguments, vXPRSObject, vUserContext,
vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use a NULL value to cancel a
callback function.

vXPRSObject A generic pointer to the mse object sending the message.

vUserContext The user-defined object passed to the callback function.

vSystemThreadId The system id of the thread sending the message caste to a void *.

sMsg A null terminated character array (string) containing the message, which may simply
be a new line. When the callback is called for the first time sMsg will be a NULL
pointer.

iMsgType Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value means the callback is being called for the first time.

iMsgNumber The number associated with the message. If the message is an error or a warning
then you can look up the number in Chapter 11 of the Optimizer Reference Manual
for advice on what it means and how to resolve the associated issue.

p A user-defined object to be passed to the callback function.

Further information
To send all messages to a log file the built in message handler XPRSlogfilehandler can be used.
This can be done with:

XPRS_mse_setcbmsghandler(mse, XPRSlogfilehandler, "log.txt");

Related topics
None.

Fair Isaac Corporation Confidential and Proprietary Information 93

MSE Functions

XPRS_mse_setdblcontrol

Purpose
Sets the value of a given double control parameter.

Synopsis
int XPRS_CC XPRS_mse_setdblcontrol(XPRSmipsolenum mse, int iControlId, double Val)

Arguments
mse The current MIP solution enumerator.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 7, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_mse_getdblcontrol, XPRS_mse_setintcontrol, XPRS_mse_getintcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 94

MSE Functions

XPRS_mse_setintcontrol

Purpose
Sets the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRS_mse_setintcontrol(XPRSmipsolenum mse, int iControlId, int Val)

Arguments
mse The current MIP solution enumerator.

iControlId Id of control whose value is to be set. A full list of all available controls may be
found in Chapter 7, or from the list in the xprs.h header file.

Val Value to which the control parameter is to be set.

Related topics
XPRS_mse_getintcontrol, XPRS_mse_setdblcontrol, XPRS_mse_getdblcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 95

MSE Functions

XPRS_mse_setsolbasename

Purpose
Sets the name to be used as a prefix for solutions found during the enumeration run.

Synopsis
int XPRS_CC XPRS_mse_setsolbasename(XPRSmipsolenum mse, const char *

sSolutionBaseName)

Arguments
mse The current MIP solution enumerator.

sSolutionBaseName A null terminated string containing the name to use as a prefix for the
solution names.

Related topics
XPRS_mse_getsolbasename.

Fair Isaac Corporation Confidential and Proprietary Information 96

CHAPTER 7

MSE Controls

MSE_CALLBACKCULLSOLS_DIVERSITY This control is used only by the callback passed to the
enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim and
XPRS_mse_opt. If the user passes the default callback
XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the diversity metric values. See
XPRS_mse_defaulthandler for details of how the control is used. If the
user provides a customized version of XPRS_mse_defaulthandler to use
in the enumeration-run then the user is free to interpret this control
value. p. 97

MSE_CALLBACKCULLSOLS_MIPOBJECT This control is used only by the callback passed to the
enumeration-run routines XPRS_mse_minum, XPRS_mse_maxim and
XPRS_mse_opt. If the user passes the default callback
XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the MIP objective values. See
XPRS_mse_defaulthandler for details of how the control is used. If the
user provides a customized version of XPRS_mse_defaulthandler to use
in the enumeration-run then the user is free to interpret this control
value. p. 98

MSE_CALLBACKCULLSOLS_MODOBJECT This control is used only by the callback passed to the
enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim and
XPRS_mse_opt. If the user passes the default callback
XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the user’s modified objective values. See
XPRS_mse_defaulthandler for details of how the control is used. If the
user provides a customized version of XPRS_mse_defaulthandler to use
in the enumeration-run then the user is free to interpret this control
value. p. 98

MSE_OPTIMIZEDIVERSITY Controls whether or not the values returned by
XPRS_mse_getcullchoice for the diversity metric are defined by simply
sorting the diversity values or if an optimization-based heuristic is to
be used. p. 98

MSE_OUTPUTTOL Zero tolerance on print values. p. 99

MSE_CALLBACKCULLSOLS_DIVERSITY

Description This control is used only by the callback passed to the enumeration-run routines
XPRS_mse_minim, XPRS_mse_maxim and XPRS_mse_opt. If the user passes the default

Fair Isaac Corporation Confidential and Proprietary Information 97

MSE Controls

callback XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the diversity metric values. See XPRS_mse_defaulthandler
for details of how the control is used. If the user provides a customized version of
XPRS_mse_defaulthandler to use in the enumeration-run then the user is free to
interpret this control value.

Type Integer

Default value -1

Affects routines XPRS_msp_getintcontrol, XPRS_msp_setintcontrol.

See also MSE_METRIC_DIVERSITY

MSE_CALLBACKCULLSOLS_MIPOBJECT

Description This control is used only by the callback passed to the enumeration-run routines
XPRS_mse_minum, XPRS_mse_maxim and XPRS_mse_opt. If the user passes the default
callback XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the MIP objective values. See XPRS_mse_defaulthandler for
details of how the control is used. If the user provides a customized version of
XPRS_mse_defaulthandler to use in the enumeration-run then the user is free to
interpret this control value.

Type Integer

Default value -1

Affects routines XPRS_msp_getintcontrol, XPRS_msp_setintcontrol

See also XPRS_mse_defaulthandler, XPRS_mse_getcullchoice, MSE_METRIC_MODOBJECT.

MSE_CALLBACKCULLSOLS_MODOBJECT

Description This control is used only by the callback passed to the enumeration-run routines
XPRS_mse_minim, XPRS_mse_maxim and XPRS_mse_opt. If the user passes the default
callback XPRS_mse_defaulthandler then the control is used to decide how many
solutions to discard based on the user’s modified objective values. See
XPRS_mse_defaulthandler for details of how the control is used. If the user provides a
customized version of XPRS_mse_defaulthandler to use in the enumeration-run then the
user is free to interpret this control value.

Type Integer

Default value -1

MSE_OPTIMIZEDIVERSITY

Description Controls whether or not the values returned by XPRS_mse_getcullchoice for the
diversity metric are defined by simply sorting the diversity values or if an
optimization-based heuristic is to be used.

Fair Isaac Corporation Confidential and Proprietary Information 98

MSE Controls

Type Integer

Values 0 Sorting is used.

1 An optimization-based heuristic is used.

Default value 0

Affects routines XPRS_msp_getintcontrol, XPRS_msp_setintcontrol

See also MSE_METRIC_DIVERSITY, XPRS_mse_getcullchoice.

MSE_OUTPUTTOL

Description Zero tolerance on print values.

Type Double

Default value 1.0E-05

Fair Isaac Corporation Confidential and Proprietary Information 99

CHAPTER 8

MSE Attributes

MSE_DIVERSITYSUM Sum of diversity metrics for the current set of solutions. p. 100

MSE_METRIC_DIVERSITY The diversity metric for a solution is the sum of difference metrics
between the solution and all others in the current set. The difference
value between two solutions is either calculated internally by the MIP
solution enumerator (using a simple difference metric that considers
only the MIP entities in the solution) or else by the user in a callback
defined with a call to XPRS_mse_setcbgetsolutiondiff. p. 100

MSE_METRIC_MIPOBJECT MIP objective value. p. 101

MSE_METRIC_MODOBJECT User-defined modified objective. The user can assign a solution with
an objective value that reflects the ’true’ objective of the solution in
cases where the MIP objective does not completely model the user’s
problem. The user needs to return this value from a callback passed to
the enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim
and XPRS_mse_opt. This routine will be some customized version of
the XPRS_mse_defaulthandler routine provided with the FICO Xpress
Optimizer. p. 101

MSE_SOLUTIONS The number of solutions found and currently stored by the MIP
solution enumerator. p. 101

MSE_DIVERSITYSUM

Description Sum of diversity metrics for the current set of solutions.

Type Double

Set by routines XPRS_msp_getdblattrib

See also MSE_METRIC_DIVERSITY

MSE_METRIC_DIVERSITY

Description The diversity metric for a solution is the sum of difference metrics between the solution
and all others in the current set. The difference value between two solutions is either
calculated internally by the MIP solution enumerator (using a simple difference metric

Fair Isaac Corporation Confidential and Proprietary Information 100

MSE Attributes

that considers only the MIP entities in the solution) or else by the user in a callback
defined with a call to XPRS_mse_setcbgetsolutiondiff.

Type Double

Set by routines XPRS_msp_getsolmetric

See also XPRS_mse_setcbgetsolutiondiff

MSE_METRIC_MIPOBJECT

Description MIP objective value.

Type Double

MSE_METRIC_MODOBJECT

Description User-defined modified objective. The user can assign a solution with an objective value
that reflects the ’true’ objective of the solution in cases where the MIP objective does
not completely model the user’s problem. The user needs to return this value from a
callback passed to the enumeration-run routines XPRS_mse_minim, XPRS_mse_maxim and
XPRS_mse_opt. This routine will be some customized version of the
XPRS_mse_defaulthandler routine provided with the FICO Xpress Optimizer.

Type Double

Set by routines XPRS_msp_getsolmetric

See also XPRS_mse_defaulthandler, XPRS_mse_minim, XPRS_mse_maxim, XPRS_mse_opt.

MSE_SOLUTIONS

Description The number of solutions found and currently stored by the MIP solution enumerator.

Type Integer

Set by routines XPRS_msp_getintattrib

See also XPRS_mse_defaulthandler

Fair Isaac Corporation Confidential and Proprietary Information 101

Appendix

APPENDIX A

Error codes

Following an error exit from a function call to the MIP solution pool or the MIP solution
enumerator library users may access the error code and a short string description of the error
using the functions XPRS_msp_getlasterror or XPRS_mse_getlasterror. The following sections list
the error codes returned by calls to the MIP solution pool and MIP solution enumerator functions.
The main Optimizer Reference manual contains the list of error codes returned by the rest of the
API.

A.1 MIP Solution Pool errors

800 First index outside bounds: <col_index>not in [0,<num_cols>- 1]

The index col_index of the first column passed to XPRS_msp_getsol is outside the range [0,
<num_cols>- 1]

801 First index greater than last

The index of the first column passed to XPRS_msp_getsol is greater than the index of the
last column.

802 Attempt to attach problem more than one XPRSmipsolpool: Attach failed

A problem cannot be attached to more than one MIP solution pool.

804 Unable to check if loaded sol is dupld: No global model avail

A check if the solution being loaded is a duplicate of an existing solution cannot be made
since no global model is available. No model is available because no problem has been
attached to the MIP solution pool.

805 Unable to check if loaded sol is dupld: Memory allocation failure

A check if the solution being loaded is a duplicate of an existing solution failed because of
a memory allocation failure.

806 Unable to check if loaded sol is dupld: Incompat src prob

A check if the solution being loaded is a duplicate of an existing solution cannot be made
because the problem from which the solution originates does not match the global model
used for duplicate checking.

807 Unable to check if loaded sol is dupld: Global model unreliable

A check if the solution being loaded is a duplicate of an existing solution cannot be made
because a required update of the global model could not be made reliably.

808 Unable to check if loaded sol is dupld: Global model reqd but inaccessible

A check if the solution being loaded is a duplicate of an existing solution cannot be made
because a required update of the global model could not be made.

Fair Isaac Corporation Confidential and Proprietary Information 103

Error codes

809 Duplicate sol chck may not work: Global model inaccessible in attaching prob

A check if the solution being loaded is a duplicate of an existing solution cannot be made
because a required capture of the global model could not be made from the problem
being attached.

810 Destroying XPRSmipsolpool with problems still attached: Probs detached automatically

The MIP solution pool is being destroyed and problems are still attached. This should be ok
although the user should be aware. This message can be avoided by detaching the
attached problems before destroying the MIP solution pool.

812 Compl duplicate sol chck: Failed

A reset operation for the duplicate solution information failed. The duplicate solution
checking may now not work reliably.

814 Failed to capture solution information

Failure calculating the information for a solution with respect to a problem.

815 Failed to generate solution check sum

A check of the problem state information failed when trying to calculate a check sum.

816 Failed to capture solution

An unexpected failure when attempting to capture a solution.

817 Failure in internal event registration

An object failed to register to receive system events.

818 Failure in internal event deregistration

An object failed to deregister the receipt of system events.

821 Unrecoverable memory allocation failure

A call made by the user failed because of a memory allocation failure.

822 Recoverable memory allocation failure: <operation_attempted>

A memory allocation failed when attempting the operation <operation_attempted >. The
system may still continue to function normally.

826 Soln col count does not match prob: <prob_id_string>: <solution_id>

The numbers of columns of solution <solution_id>and of problem <prob_id_string>are
required to be the equal (but they are not).

827 Soln is deleted and no longer available: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
solution has been deleted.

829 Soln id does not exist: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
id is for a solution that does not exist.

830 Unable to make a reliable list of sols for prob: <prob_id_string>: Unable to access prob
state

An attempt to make a list of solutions that relate to problem <prob_id_string>failed
because state information of the problem could not be reliably accessed.

831 Unrecognized attribute id <attribute_id>: Solutions will not be sorted

The user seems to want a list of solutions sorted by some attribute but the attribute id is
not recognized.

Fair Isaac Corporation Confidential and Proprietary Information 104

Error codes

835 Column count does not match prob: <num_solution_cols>: <num_prob_cols>

The numbers of columns of a given solution vector and of a given problem are required to
be the equal (but they are not).

836 Failure writing solution to file: <file_name>

An unexpected failure was encountered writing solution(s) to file <file_name>.

837 Failure opening file for writing: <file_name>

An unexpected failure was encountered opening file <file_name>for writing.

838 Failure opening file for reading: <file_name>

An unexpected failure was encountered opening file <file_name>for reading.

839 Loading sol failed : <prob_id_string>: id=<solution_id><message>

A failure occurred when loading solution <solution_id>into problem <prob_id_string>. The
failure is described in string <message>.

842 Loading sol interrupted: <prob_id_string>: id=<solution_id>

Loading was interrupted of solution <solution_id>into problem <prob_id_string>.

851 Unrecognized duplicate solution policy id: <policy_id>

The user has attempted to set an unrecognized value <policy_id>for the control
MSP_DUPLICATESOLUTIONSPOLICY.

852 Reading solution skipped: ‘<solution_name>’

The solution named <solution_name>was skipped while reading solutions from file. A
previous message describes why the solution could not be read.

853 Error detected in debug duplicate solution check: <message>

A rigorous duplicate solution checking routine found an anomaly described in <message>.

855 Changing <tolerance_name>for solution ‘<solution_name>’ captured from problem:
<system_tol_value>-><user_tol_value>

A warning that the user is changing the tolerance <tolerance_name>(MIPTOL or FEASTOL)
for a solution from the value it was set to by the system <system_tol_value>to a different
value <user_tol_value>.

859 No solutions written

No solutions were written in a call to XPRS_msp_writeslxsol.

868 <operation_name>is only allowed for attached problems

The operation <operation_name>is only allowed for problems attached to the MIP solution
pool.

869 Soln is deleted and no longer available: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
solution seems to have been deleted.

870 Soln id does not exist: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
id is for a solution that has not yet been encountered.

871 Unrecoverable memory allocation failure

A call made by the user failed because of a memory allocation failure.

Fair Isaac Corporation Confidential and Proprietary Information 105

Error codes

874 Unrecognized solution metric id: <metric_id>

The metric id <metric_id>passed by the user is unrecognized.

875 No solutions available

The user is attempting to access information about the stored solutions but the solution
storage is empty.

876 Enumerator is already running

The user is attempting to run the enumeration while the enumeration is already running.

875 Failed to access XPRSmipsolpool state: <access_operation>

The MIP solution enumerator failed accessing the MIP solution pool state with access
operation <access_operation>.

878 Failed to access XPRSprob state: <access_operation>

The MIP solution enumerator failed accessing the problem state with access operation
<access_operation>.

879 Failed to allocate memory

The MIP solution enumerator failed to allocate memory.

882 Missing required arguments for running enumerator

Arguments passed to the enumeration-run routine (e.g., XPRS_mse_minim) were required
to be non-NULL but were passed as NULL.

883 Problem no longer has the same number of columns

The column dimension of the problem used by the MIP solution enumerator was changed
by user.

885 Failure storing solution with memory allocation failure

A memory allocation failure meant that a solution could not be captured.

886 Failure storing solution(s) with failed access to XPRSmipsolpool state: <access_operation>

A solution could not be captured because of a failure accessing the state of the MIP
solution pool with access operation <access_operation>.

887 Failure storing solution(s) with failed access to XPRSprob state: <access_operation>

A solution could not be captured because of a failure accessing the state of the problem
with access operation <access_operation>.

1000 Invalid parameter access : <error_message>(<routine_name>)

Access to a parameter with a call to routine <routine_name>failed because of error
described in <error_message>.

1006 Failed to capture solution information from problem

Failure calculating the information for a solution with respect to a problem.

1012 Problem <prob_id_string>detached unexpectedly

A problem <prob_id_string>attached to the MIP solution pool was unexpectedly detached
by the user.

1013 Cannot attach thread problem to MIP solution pool

The user has attempted to attach an internal problem being solved by the parallel MIP
search to a MIP solution pool.

Fair Isaac Corporation Confidential and Proprietary Information 106

Error codes

1014 Column count mismatch: <num_solution_cols>!= <num_row_vector_cols>

A row vector of length <num_row_vector_cols>passed to the MIP solution pool for
evaluation against a solution does not contain the same number of columns as the solution
<num_solution_cols>.

A.2 MIP Solution Enumerator errors

869 Soln is deleted and no longer available: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
solution seems to have been deleted.

870 Soln id does not exist: <solution_id>

The user has attempted to access information for the solution with id <solution_id>but the
id is for a solution that has not yet been encountered.

871 Unrecoverable memory allocation failure

A call made by the user failed because of a memory allocation failure.

874 Unrecognized solution metric id: <metric_id>

The metric id <metric_id>passed by the user is unrecognized.

875 No solutions available

The user is attempting to access information about the stored solutions but the solution
storage is empty.

876 Enumerator is already running

The user is attempting to run the enumeration while the enumeration is already running.

877 Failed to access XPRSmipsolpool state: <access_operation>

The MIP solution enumerator failed accessing the MIP solution pool state with access
operation <access_operation>.

878 Failed to access XPRSprob state: <access_operation>

The MIP solution enumerator failed accessing the problem state with access operation
<access_operation>.

879 Failed to allocate memory

The MIP solution enumerator failed to allocate memory.

882 Missing required arguments for running enumerator

Arguments passed to the enumeration-run routine (e.g., XPRS_mse_minim) were required to
be non-NULL but were passed as NULL.

883 Problem no longer has the same number of columns

The column dimension of the problem used by the MIP solution enumerator was changed
by user.

885 Failure storing solution with memory allocation failure

A memory allocation failure meant that a solution could not be captured.

886 Failure storing solution(s) with failed access to XPRSmipsolpool state: <access_operation>

A solution could not be captured because of a failure accessing the state of the MIP
solution pool with access operation <access_operation>.

Fair Isaac Corporation Confidential and Proprietary Information 107

Error codes

887 Failure storing solution(s) with failed access to XPRSprob state: <access_operation>

A solution could not be captured because of a failure accessing the state of the problem
with access operation <access_operation>.

1000 Invalid parameter access : <error_message>(<routine_name>)

Access to a parameter with a call to routine <routine_name>failed because of error
described in <error_message>.

1007 Unexpected failure evaluating solution difference metric

An unexpected failure occurred while evaluating difference metrics for solutions.

1008 Solution difference metric value is reserved : -1.7976931348623158e+308

The double value -1.7976931348623158e+308 to be assigned for a difference metric
between two solutions is reserved by the system.

1009 Unexpected failure evaluating solution differences

An unexpected error occurred while evaluating the diversity of the stored solutions.

1010 User signaled failure in solution difference metric callback

The user signaled a failure in the callback defined by a call to
XPRS_mse_setcbgetsolutiondiff.

1011 Cannot evaluate diversity of new solution: Column number mismatch:
<num_solution_cols>!= <num_prob_cols>

The solution passed down to XPRS_mse_getcullchoice for the diversity metric does not
have the same number of columns as the problem used in the enumeration run.

1015 Destroying while enumeration running

The user is attempting to destroy the MIP solution enumerator while it is running.

1016 Failed to update MIPABSCUTOFF

The MIP solution enumerator failed to update the MIPABSCUTOFF (p.422 of the Optimizer
Reference Manual) on the problem running the enumeration.

1017 Unable to check if loaded sol is dupld: Sol cols (num_solution_cols) does not match global
model (num_global_model_cols)

A check if the solution being loaded is a duplicate of an existing solution cannot be made
because the solution array does not have the same number of columns as the global model
used for duplicate checking.

1018 Global model unavailable for diversity: <reason_string>

The MIP solution enumerator is setup such that internal solution diversity calculations may
be made although this will fail because it requires that an appropriate problem is attached
to the MIP solution pool (see <reason_string> for details).

1019 Cannot handle diversity: <reason_string>

The user has called a function that requires solution diversity calculations to be made
internally by the MIP solution enumerator and this has failed because it requires that an
appropriate problem is attached to the MIP solution pool (see <reason_string> for details).

Fair Isaac Corporation Confidential and Proprietary Information 108

APPENDIX B

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 109

http://www.fico.com/support
http://www.fico.com/support
mailto:Support@fico.com?subject=Xpress
http://www.fico.com/en/product-training
mailto:producteducation@fico.com
mailto:techpubs@fico.com?subject=Xpress

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 110

mailto:XpressSalesUS@fico.com
mailto:XpressSalesUK@fico.com
http://www.fico.com
http://www.myfico.com
http://www.fico.com

Index

Numbers
800, 103
801, 103
802, 103
804, 103
805, 103
806, 103
807, 103
808, 103
809, 104
810, 104
812, 104
814, 104
815, 104
816, 104
817, 104
818, 104
821, 104
822, 104
826, 104
827, 104
829, 104
830, 104
831, 104
835, 105
836, 105
837, 105
838, 105
839, 105
842, 105
851, 105
852, 105
853, 105
855, 105
859, 105
868, 105
869, 105, 107
870, 105, 107
871, 105, 107
874, 106, 107
875, 106, 107
876, 106, 107
877, 107
878, 106, 107
879, 106, 107
882, 106, 107
883, 106, 107
885, 106, 107
886, 106, 107
887, 106, 108
1000, 106, 108
1006, 106

1007, 108
1008, 108
1009, 108
1010, 108
1011, 108
1012, 106
1013, 106
1014, 107
1015, 108
1016, 108
1017, 108
1018, 108
1019, 108

M
MSE_CALLBACKCULLSOLS_DIVERSITY, 97
MSE_CALLBACKCULLSOLS_MIPOBJECT, 98
MSE_CALLBACKCULLSOLS_MODOBJECT, 98
MSE_DIVERSITYSUM, 100
MSE_METRIC_DIVERSITY, 100
MSE_METRIC_MIPOBJECT, 101
MSE_METRIC_MODOBJECT, 101
MSE_OPTIMIZEDIVERSITY, 98
MSE_OUTPUTTOL, 99
MSE_SOLUTIONS, 101
MSP_DEFAULTUSERSOLFEASTOL, 51
MSP_DEFAULTUSERSOLMIPTOL, 52
MSP_DUPLICATESOLUTIONSPOLICY, 52
MSP_INCLUDEPROBNAMEINLOGGING, 52
MSP_PRB_FEASIBLESOLS, 56
MSP_PRB_VALIDSOLS, 57
MSP_SOL_BITFIELDSSYS, 65
MSP_SOL_BITFIELDSUSR, 52
MSP_SOL_COLS, 65
MSP_SOL_FEASTOL, 53
MSP_SOL_ISREPROCESSEDUSERSOLUTION, 65
MSP_SOL_ISUSERSOLUTION, 65
MSP_SOL_MIPTOL, 53
MSP_SOL_NONZEROS, 65
MSP_SOLPRB_INFCNT_BIN, 57
MSP_SOLPRB_INFCNT_COLUMN, 57
MSP_SOLPRB_INFCNT_DELAYEDROW, 57
MSP_SOLPRB_INFCNT_INT, 57
MSP_SOLPRB_INFCNT_MIP, 57
MSP_SOLPRB_INFCNT_PI, 58
MSP_SOLPRB_INFCNT_PRIMAL, 58
MSP_SOLPRB_INFCNT_SC, 58
MSP_SOLPRB_INFCNT_SET1, 58
MSP_SOLPRB_INFCNT_SET2, 58
MSP_SOLPRB_INFCNT_SI, 58
MSP_SOLPRB_INFCNT_SLACK, 59
MSP_SOLPRB_INFEASCOUNT, 59

Fair Isaac Corporation Confidential and Proprietary Information 111

Index

MSP_SOLPRB_INFMAX_BIN, 59
MSP_SOLPRB_INFMAX_COLUMN, 59
MSP_SOLPRB_INFMAX_DELAYEDROW, 59
MSP_SOLPRB_INFMAX_INT, 59
MSP_SOLPRB_INFMAX_PI, 60
MSP_SOLPRB_INFMAX_SC, 60
MSP_SOLPRB_INFMAX_SET1, 60
MSP_SOLPRB_INFMAX_SET2, 60
MSP_SOLPRB_INFMAX_SI, 60
MSP_SOLPRB_INFMAX_SLACK, 60
MSP_SOLPRB_INFMXI_BIN, 61
MSP_SOLPRB_INFMXI_COLUMN, 61
MSP_SOLPRB_INFMXI_DELAYEDROW, 61
MSP_SOLPRB_INFMXI_INT, 61
MSP_SOLPRB_INFMXI_PI, 61
MSP_SOLPRB_INFMXI_SC, 61
MSP_SOLPRB_INFMXI_SET1, 62
MSP_SOLPRB_INFMXI_SET2, 62
MSP_SOLPRB_INFMXI_SI, 62
MSP_SOLPRB_INFMXI_SLACK, 62
MSP_SOLPRB_INFSUM_BIN, 62
MSP_SOLPRB_INFSUM_COLUMN, 62
MSP_SOLPRB_INFSUM_DELAYEDROW, 63
MSP_SOLPRB_INFSUM_INT, 63
MSP_SOLPRB_INFSUM_MIP, 63
MSP_SOLPRB_INFSUM_PI, 63
MSP_SOLPRB_INFSUM_PRIMAL, 63
MSP_SOLPRB_INFSUM_SC, 63
MSP_SOLPRB_INFSUM_SET1, 64
MSP_SOLPRB_INFSUM_SET2, 64
MSP_SOLPRB_INFSUM_SI, 64
MSP_SOLPRB_INFSUM_SLACK, 64
MSP_SOLPRB_OBJ, 64
MSP_SOLUTIONS, 64

X
XPRS_mse_addcbmsghandler, 73
XPRS_mse_create, 74
XPRS_mse_defaulthandler, 75
XPRS_mse_destroy, 76
XPRS_mse_getcbmsghandler, 77
XPRS_mse_getcullchoice, 78
XPRS_mse_getdblattrib, 79
XPRS_mse_getdblcontrol, 80
XPRS_mse_getintattrib, 81
XPRS_mse_getintcontrol, 82
XPRS_mse_getlasterror, 83
XPRS_mse_getsolbasename, 84
XPRS_mse_getsollist, 85
XPRS_mse_getsolmetric, 86
XPRS_mse_maxim, 87
XPRS_mse_minim, 88
XPRS_mse_opt, 89
XPRS_mse_removecbmsghandler, 90
XPRS_mse_setcbgetsolutiondiff, 91
XPRS_mse_setcbmsghandler, 93
XPRS_mse_setdblcontrol, 94
XPRS_mse_setintcontrol, 95
XPRS_mse_setsolbasename, 96
XPRS_msp_addcbmsghandler, 12

XPRS_msp_create, 13
XPRS_msp_delsol, 14
XPRS_msp_destroy, 15
XPRS_msp_findsolbyname, 16
XPRS_msp_getcbmsghandler, 17
XPRS_msp_getdblattrib, 18
XPRS_msp_getdblattribprob, 19
XPRS_msp_getdblattribprobextreme, 20
XPRS_msp_getdblattribprobsol, 21
XPRS_msp_getdblattribsol, 22
XPRS_msp_getdblcontrol, 23
XPRS_msp_getdblcontrolsol, 24
XPRS_msp_getintattrib, 25
XPRS_msp_getintattribprob, 26
XPRS_msp_getintattribprobextreme, 27
XPRS_msp_getintattribprobsol, 28
XPRS_msp_getintattribsol, 29
XPRS_msp_getintcontrol, 30
XPRS_msp_getintcontrolsol, 31
XPRS_msp_getlasterror, 32
XPRS_msp_getsol, 33
XPRS_msp_getsollist, 34
XPRS_msp_getsollist2, 36
XPRS_msp_getsolname, 38
XPRS_msp_loadsol, 39
XPRS_msp_probattach, 40
XPRS_msp_probdetach, 41
XPRS_msp_readslxsol, 42
XPRS_msp_removecbmsghandler, 43
XPRS_msp_setcbmsghandler, 44
XPRS_msp_setdblcontrol, 45
XPRS_msp_setdblcontrolsol, 46
XPRS_msp_setintcontrol, 47
XPRS_msp_setintcontrolsol, 48
XPRS_msp_setsolname, 49
XPRS_msp_writeslxsol, 50

Fair Isaac Corporation Confidential and Proprietary Information 112

	I MIP Solution Pool
	Introduction
	Overview
	Data Model
	Solution input
	Attaching problems
	Input from file and from memory

	Solution querying
	Solution value output to file and memory
	Attributes
	MIP solution pool attributes
	Solution attributes
	Problem attributes
	Solution and problem pair attributes

	Getting lists of solutions
	Control options
	Duplicate solutions

	MSP Functions
	XPRS_msp_addcbmsghandler
	XPRS_msp_create
	XPRS_msp_delsol
	XPRS_msp_destroy
	XPRS_msp_findsolbyname
	XPRS_msp_getcbmsghandler
	XPRS_msp_getdblattrib
	XPRS_msp_getdblattribprob
	XPRS_msp_getdblattribprobextreme
	XPRS_msp_getdblattribprobsol
	XPRS_msp_getdblattribsol
	XPRS_msp_getdblcontrol
	XPRS_msp_getdblcontrolsol
	XPRS_msp_getintattrib
	XPRS_msp_getintattribprob
	XPRS_msp_getintattribprobextreme
	XPRS_msp_getintattribprobsol
	XPRS_msp_getintattribsol
	XPRS_msp_getintcontrol
	XPRS_msp_getintcontrolsol
	XPRS_msp_getlasterror
	XPRS_msp_getsol
	XPRS_msp_getsollist
	XPRS_msp_getsollist2
	XPRS_msp_getsolname
	XPRS_msp_loadsol
	XPRS_msp_probattach
	XPRS_msp_probdetach
	XPRS_msp_readslxsol
	XPRS_msp_removecbmsghandler
	XPRS_msp_setcbmsghandler
	XPRS_msp_setdblcontrol
	XPRS_msp_setdblcontrolsol
	XPRS_msp_setintcontrol
	XPRS_msp_setintcontrolsol
	XPRS_msp_setsolname
	XPRS_msp_writeslxsol

	MSP Control Parameters
	MSP_DEFAULTUSERSOLFEASTOL
	MSP_DEFAULTUSERSOLMIPTOL
	MSP_DUPLICATESOLUTIONSPOLICY
	MSP_INCLUDEPROBNAMEINLOGGING
	MSP_SOL_BITFIELDSUSR
	MSP_SOL_FEASTOL
	MSP_SOL_MIPTOL

	MSP Attributes
	MSP_PRB_FEASIBLESOLS
	MSP_PRB_VALIDSOLS
	MSP_SOLPRB_INFCNT_BIN
	MSP_SOLPRB_INFCNT_COLUMN
	MSP_SOLPRB_INFCNT_DELAYEDROW
	MSP_SOLPRB_INFCNT_INT
	MSP_SOLPRB_INFCNT_MIP
	MSP_SOLPRB_INFCNT_PI
	MSP_SOLPRB_INFCNT_PRIMAL
	MSP_SOLPRB_INFCNT_SC
	MSP_SOLPRB_INFCNT_SET1
	MSP_SOLPRB_INFCNT_SET2
	MSP_SOLPRB_INFCNT_SI
	MSP_SOLPRB_INFCNT_SLACK
	MSP_SOLPRB_INFEASCOUNT
	MSP_SOLPRB_INFMAX_BIN
	MSP_SOLPRB_INFMAX_COLUMN
	MSP_SOLPRB_INFMAX_DELAYEDROW
	MSP_SOLPRB_INFMAX_INT
	MSP_SOLPRB_INFMAX_PI
	MSP_SOLPRB_INFMAX_SC
	MSP_SOLPRB_INFMAX_SET1
	MSP_SOLPRB_INFMAX_SET2
	MSP_SOLPRB_INFMAX_SI
	MSP_SOLPRB_INFMAX_SLACK
	MSP_SOLPRB_INFMXI_BIN
	MSP_SOLPRB_INFMXI_COLUMN
	MSP_SOLPRB_INFMXI_DELAYEDROW
	MSP_SOLPRB_INFMXI_INT
	MSP_SOLPRB_INFMXI_PI
	MSP_SOLPRB_INFMXI_SC
	MSP_SOLPRB_INFMXI_SET1
	MSP_SOLPRB_INFMXI_SET2
	MSP_SOLPRB_INFMXI_SI
	MSP_SOLPRB_INFMXI_SLACK
	MSP_SOLPRB_INFSUM_BIN
	MSP_SOLPRB_INFSUM_COLUMN
	MSP_SOLPRB_INFSUM_DELAYEDROW
	MSP_SOLPRB_INFSUM_INT
	MSP_SOLPRB_INFSUM_MIP
	MSP_SOLPRB_INFSUM_PI
	MSP_SOLPRB_INFSUM_PRIMAL
	MSP_SOLPRB_INFSUM_SC
	MSP_SOLPRB_INFSUM_SET1
	MSP_SOLPRB_INFSUM_SET2
	MSP_SOLPRB_INFSUM_SI
	MSP_SOLPRB_INFSUM_SLACK
	MSP_SOLPRB_OBJ
	MSP_SOLUTIONS
	MSP_SOL_BITFIELDSSYS
	MSP_SOL_COLS
	MSP_SOL_ISREPROCESSEDUSERSOLUTION
	MSP_SOL_ISUSERSOLUTION
	MSP_SOL_NONZEROS

	II MIP Solution Enumerator
	Introduction
	Overview
	Applications: N-Best Solutions Example
	Presolve considerations
	Basic customization
	Advanced customization
	Data Model

	MSE Functions
	XPRS_mse_addcbmsghandler
	XPRS_mse_create
	XPRS_mse_defaulthandler
	XPRS_mse_destroy
	XPRS_mse_getcbmsghandler
	XPRS_mse_getcullchoice
	XPRS_mse_getdblattrib
	XPRS_mse_getdblcontrol
	XPRS_mse_getintattrib
	XPRS_mse_getintcontrol
	XPRS_mse_getlasterror
	XPRS_mse_getsolbasename
	XPRS_mse_getsollist
	XPRS_mse_getsolmetric
	XPRS_mse_maxim
	XPRS_mse_minim
	XPRS_mse_opt
	XPRS_mse_removecbmsghandler
	XPRS_mse_setcbgetsolutiondiff
	XPRS_mse_setcbmsghandler
	XPRS_mse_setdblcontrol
	XPRS_mse_setintcontrol
	XPRS_mse_setsolbasename

	MSE Controls
	MSE_CALLBACKCULLSOLS_DIVERSITY
	MSE_CALLBACKCULLSOLS_MIPOBJECT
	MSE_CALLBACKCULLSOLS_MODOBJECT
	MSE_OPTIMIZEDIVERSITY
	MSE_OUTPUTTOL

	MSE Attributes
	MSE_DIVERSITYSUM
	MSE_METRIC_DIVERSITY
	MSE_METRIC_MIPOBJECT
	MSE_METRIC_MODOBJECT
	MSE_SOLUTIONS

	Appendix
	Error codes
	MIP Solution Pool errors
	MIP Solution Enumerator errors

	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

