Applications in Research and Industry

Michael Ritter Matthias Silbernagl

ТШ

Technische Universität München

Workshop on Optimization Applications with FICO Xpress 2010

Xpress in Mathematics Education

- courses complementing mathematical programming classes
- hands-on modelling experience
- implementation using Mosel
- trial and error → learning experience
- involvement in industry/research projects

flight scheduling at airports

- increasing air traffic
- limited airport capacity
- operational constraints
- legal restrictions

objective: optimal airport schedule

flight scheduling at airports

Issue:

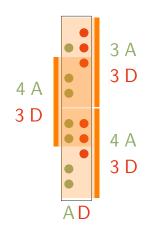
- limited airport capacity ↔ increasing demand
- allocation of arrival/departure slots

flight scheduling at airports

Issue:

- limited airport capacity ← increasing demand
- allocation of arrival/departure slots

Constraints:


- airlines' demands
- arrival / departure correspondance
- limited ground times

- coupled series
- hub/feeder flights
- legal restrictions
- time windows

time window constraints

- bounds on arrivals, departures, total flights
- time windows overlapping
- local bounds
 - ← "globalized" effect

- integer linear program
- one season (6 months)
 - $ightarrow \approx 190\,000$ time windows
 - $ightarrow \approx 200\,000$ requests
 - → many linked requests
- \blacksquare \approx 150 000 binary variables
- $\mathbf{z} \approx 300\,000$ constraints

- Java software embedding Xpress Mosel
- data preprocessing
 - → decrease number of variables
- SOS-type constraints
 - → guide branching process
- fast heuristics
 - → feasible solutions
 - → bound generation
 - → speed up branch & bound

problems in flight scheduling practice

- limited influence on scheduling process
- non-optimal scheduling procedures still implemented
- combinatorics of time windows
 - "blocking" in real flight schedules (full, but not maximum)

problems in flight scheduling practice

new question

Design time windows such that

- capacity limits are respected
- no "bad" schedule is possible
- optimal number of flights does not change

optimal time window structure

- structural analysis
- "optimal" blocking strategies → IP model
- devise strategies to avoid blocking
- extensive tests using Java/Mosel software

results summary

flight scheduling:

- increase by \approx 4 000 movements
- generally better schedule

time window design:

- several strategies devised
- extensive tests using Java/Mosel
- small trade-off: flights ↔ robustness

traffic infrastructure repair works

- bridge repair works
 traffic impact
- staff/budget/time restrictions
- third-party works
 (e.g. railway tracks)

objective: minimize traffic impact

traffic infrastructure repairs works

traffic infrastructure

- size, condition → repair cost
- third-party infrastructure (railway tracks)
- traffic impact: "network effect"
 - → complex interdependencies

traffic infrastructure repairs works

traffic infrastructure

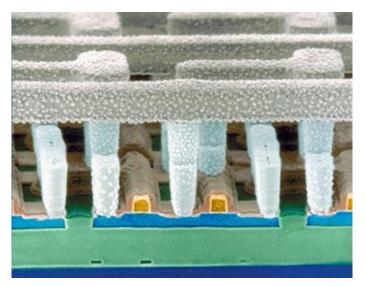
- size, condition → repair cost
- current condition → repair deadline
- third-party infrastructure (railway tracks)
- traffic impact: "network effect"
 - → complex interdependencies

objective

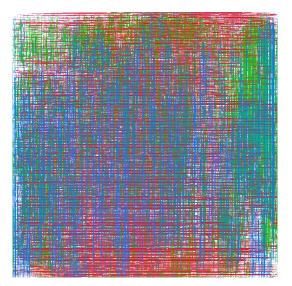
- minimize traffic impact
- balance repair costs
- utilize third-party repairs whenever possible

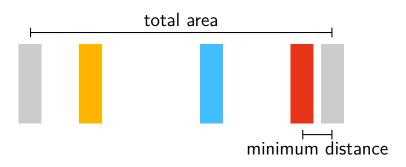
power loss in semiconductor circuits

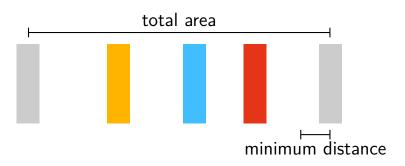
- energy consumption, heat dissipation
- increased risk of failure
 → sophisticated cooling devices
 mobile devices, medicine,

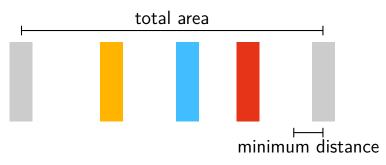

aeronautics

objective: decrease power loss

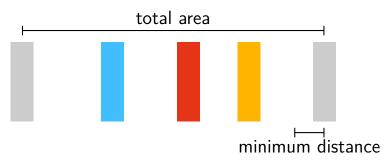


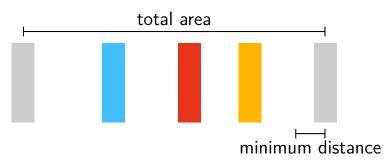



semiconductor circuit



semiconductor circuit




questions

optimal distances?

questions

optimal distances?

questions

- optimal distances?
- optimal order?

initial approach

- nonlinear objective function
- continuous and integer variables
- hundreds of wires

initial approach

- nonlinear objective function
- continuous and integer variables
- hundreds of wires

structural analysis

- spacing and ordering → two subproblems
- spacing analytically solvable

initial approach

- nonlinear objective function
- continuous and integer variables
- hundreds of wires

structural analysis

- spacing and ordering → two subproblems
- spacing analytically solvable
- ordering turns into special TSP
- even TSP efficiently solvable(!)

enhanced models

- correlation in wire switches (simultaneous switches)
- more complicated objective (timing, crosstalk, etc.)
- deplacement costs
- interaction with more than two neighboring wires

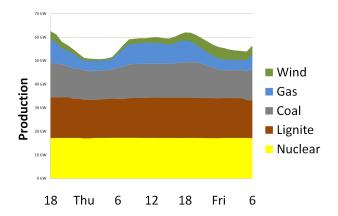
enhanced models

- correlation in wire switches (simultaneous switches)
- more complicated objective (timing, crosstalk, etc.)
- deplacement costs
- interaction with more than two neighboring wires

significant structural changesmuch harder to solve

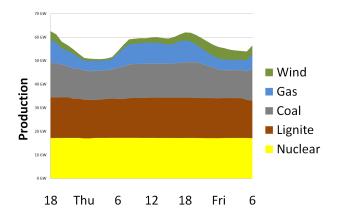
modelling the power market

- renewable energy production grows rapidly
- especially production from wind units



modelling the power market

- renewable energy production grows rapidly
- especially production from wind units
- but: production fluctuates heavily



power production

cheap units are used for base loadfast but expensive units are used for peak load

power production

production of wind units fluctuates heavilymore wind units in the future intensify situation

problem

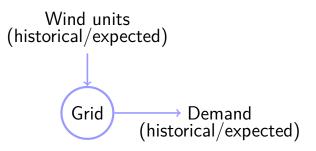
- expectation: more fast gas units needed
- how many, at which price?

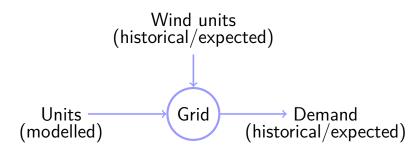
problem

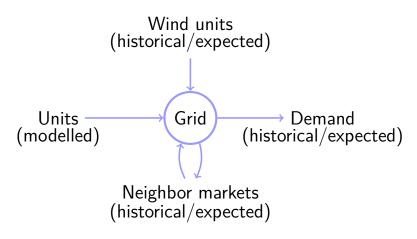
- expectation: more fast gas units needed
- how many, at which price?

Ļ

 goal: quantify competitive advantage of gas units
 model the power market







completely in Xpress Mosel

completely in Xpress Mosel

- flexible data sources and targets
 - → Oracle database
 - \clubsuit Excel worksheet \rightarrow frontend for

non-programmers

- completely in Xpress Mosel
- flexible data sources and targets
 - → Oracle database
 - \blacklozenge Excel worksheet \rightarrow frontend for

non-programmers

- data preprocessing
 - \blacktriangleright real-world parameters \rightarrow model parameters
 - → substantial reduction of constraints
- no customization of Xpress Optimizer needed