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Abstract

�is chapter describes the history of metaheuristics in �ve distinct periods, starting long
before the �rst use of the term and ending a long time in the future.

1 Introduction

Even though people have used heuristics throughout history, and the human brain is equipped
with a formidable heuristic engine to solve an enormous array of challenging optimization
problems, the scienti�c study of heuristics (and, by extension, metaheuristics) is a relatively
young endeavour. It is not an exaggeration to claim that the �eld of (meta)heuristics, espe-
cially compared to other �elds of study like physics, chemistry, and mathematics, has yet to
reach a mature state. Nevertheless, enormous progress has been made since the �rst meta-
heuristics concepts were established. In this chapter, we will a�empt to describe the historical
developments this �eld of study has gone through since its earliest days.

No history is ever neutral, and a history of metaheuristics — or any other topic — can be wri�en
in many di�erent ways. A straightforward (one could say “easy”) history of metaheuristics
would consist of an annotated and chronological list of metaheuristic methods. Useful as such
a list may be, it su�ers from a lack of insight into the development of the �eld as a whole.
To illustrate this viewpoint, consider the list in Figure 1, that appeared on Wikipedia until
April 8, 2013 to illustrate the “most important contributions” in the �eld of metaheuristics. It
is our opinion that such a list is not particularly enlightening (and neither was the article that
contained it) when it comes to explaining the evolution of the �eld of metaheuristics.

∗To appear in R. Martı́, P. Pardalos, and M. Resende, Handbook of Heuristics, Springer, 2016.
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Figure 1: “Most important contributions” list as it appeared on Wikipedia until April 8, 2013
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Taking a bird’s eye view of the �eld of metaheuristics, one has to conclude that there has been
a large amount of progressive insight over the years. Moreover, this progressive insight has
not reached its end point: the way researchers and practitioners look at metaheuristics is still
continually shi�ing. Even the answer to the question what a metaheuristic is, has changed
quite a lot since the word was �rst coined in the second half of the 1980s. In our view, it is
this shi�ing viewpoint that deserves to be wri�en down, as it allows us to truly understand the
past and perhaps learn a few lessons that could be useful for the future development of research
in metaheuristics. We did not limit our discussion in this chapter to metaheuristics that have
been formally wri�en down and published. When studying the history of metaheuristics with
an open mind, one has to conclude that people have been using heuristics and metaheuristics
long before the term even existed.

We have therefore adopted a di�erent approach to write “our” history of metaheuristics. Our
approach starts well before the term “metaheuristic” was coined and is based on the premise
that people have looked at metaheuristics through di�erent sets of glasses over the years. �e
way in which people — not only researchers — have interpreted the di�erent metaheuristic
concepts has shaped the way in which the �eld has been developing. To understand the design
choices that people have been making when developing metaheuristic optimization algorithms,
it is paramount that these choices are understood in relationship to the trends and viewpoints
of the time during which the development took place.

Our history divides time in �ve distinct periods. �e crispness of the boundaries between each
pair of consecutive periods, however, is a gross simpli�cation of reality. �e real (if one can use
that word) time periods during which the paradigm shi�s took place are usually spaced out over
several years, but it is di�cult, if not impossible, to trace the exact moments in time at which the
paradigm shi�s began and ended. More importantly, not every researcher necessarily makes
the transition at the same time.

• �e pre-theoretical period (until c. 1940), during which heuristics and even metaheuristics
are used but not formally studied.

• �e early period (c. 1940 – c. 1980), during which the �rst formal studies on heuristics
appear.

• �e method-centric period (c. 1980 – c. 2000), during which the �eld of metaheuristics
truly takes o� and many di�erent methods are proposed.

• �e framework-centric period (c. 2000 – now), during which the insight grows that meta-
heuristics are more usefully described as frameworks, and not as methods.

• �e scienti�c period (the future), during which the design of metaheuristics becomes a
science instead of an art.

Until recently, a clear de�nition of the word metaheuristic has been lacking, and it could be
argued that it is still disputed. In this chapter, we adopt the de�nition of Sörensen and Glover
(2013).
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“A metaheuristic is a high-level problem-independent algorithmic framework that
provides a set of guidelines or strategies to develop heuristic optimization algo-
rithms. �e term is also used to refer to a problem-speci�c implementation of a
heuristic optimization algorithm according to the guidelines expressed in such a
framework.”

�e term “metaheuristic” has been used (and is used) for two entirely di�erent things. One is
a high-level framework, a set of concepts and strategies that blend together, and o�er a per-
spective on the development of optimization algorithms. In this sense, variable neighborhood
search (Mladenović and Hansen, 1997) is nothing more (or less) than the idea to use di�erent
local search operators to work on a single solution, together with a perturbation operator once
all neighborhoods have reached a local optimum. �ere is a compelling motivation, as well
a large amount of empirical evidence, as to why multi-neighborhood search is indeed a very
good idea. �is motivation essentially comes down to the fact that a local optimum for one
local search operator (or one neighborhood structure) is usually not a local optimum for an-
other local search operator. �e idea to switch to a di�erent local search operator once a local
optimum has been found, is therefore both sensible and in practice extremely powerful.

�e second meaning of the term “metaheuristic” denotes a speci�c implementation of an algo-
rithm based on such a framework (or on a combination of concepts from di�erent frameworks)
designed to �nd a solution to a speci�c optimization problem. �e variable neighborhood
search (-based) algorithm for the location-routing problem by Jarboui et al. (2013) is an exam-
ple of a metaheuristic in this sense.

In this chapter, we will use the term “metaheuristic framework” to refer to the �rst sense and
“metaheuristic algorithm” to refer to the second sense of the word “metaheuristic”.

As mentioned, a history of any topic is not a neutral. We therefore do not a�empt to hide
the fact that certain ways in which the �eld has been progressing seem to us less useful, and
sometimes even harmful to the development of the �eld in general. For example, many of the
entries that appear on the list in Figure 1 are, in our view, not “important contributions” at all,
but rather marginal additions to a list of generally useless “novel” metaphor-based methods
that are best forgo�en as quickly as possible.

2 Period 0: The pre-theoretical period

Optimization problems are all around us. When we decide upon the road to take to work, when
we put the groceries in the fridge, when we decide which investments to make so as to maxi-
mize our expected pro�t, we are essentially solving an optimization problem (a shortest path
problem, a packing problem, and a knapsack problem respectively). For human beings (and
many animal species), solving an optimization problem does not require any formal training,
something which is immediately clear from the examples given here. �e di�erence between
exact solutions and approximate solutions, the di�erence between easy and hard optimization
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problems or between fast (polynomial) and slow (exponential) algorithms are all moot to the
average problem-solver.

Indeed, the human mind seems to be formidably equipped from early childhood on to solve an
incredible range of problems, many of which could be easily modelled as optimization prob-
lems. Most likely, the ability to solve optimization problems adequately and quickly is one of
the most important determinants of the probability of survival in all sentient species, and has
therefore been favored by evolution throughout time. Clearly, the human (and animal) mind
solves optimization problems heuristically and not exactly, i.e., the solutions produced by the
brain are by no means guaranteed to be optimal. Given what we now know about exact solu-
tion procedures, this makes perfect sense. When determining the trajectory of a spear to hit
a mammoth, it is much more important that this trajectory be calculated quickly rather than
optimally. Given our knowledge on exact solution methods, we can now say that the calcu-
lation of the exact solution (let us say the solution that has the highest probability to hit the
mammoth exactly between the eyes given its current trajectory, the terrain in front of it, its an-
ticipated trajectory changes, the current wind direction, etc.) would almost certainly be found
only a�er our target has disappeared on the horizon. Moreover, it would almost certainly re-
quire too much computing power from the brain, quickly depleting the body’s scarce energy
resources.

Given the diversity of problems the human mind must solve, including problems with which
it has no prior experience, there is very li�le doubt that the human mind has the capacity
(whether evolved or learned) to use meta-heuristic strategies. Just like the metaheuristics for
optimization that form the subject of this book, such strategies are not heuristics in themselves,
but are used to derive heuristics from. For example, when confronted with a new problem to
which a solution is not immediately obvious (e.g., determining the trajectory of a spear to hit a
mammoth), the human mind will automatically a�empt to �nd similar problems it has solved in
the past (e.g., determining the trajectory of a stone to hit a bear) and a�empt to derive the rules
it has learned by solving this problem. �is strategy is called learning by analogy (Carbonell,
1983). Another example is called means-end-analysis (Simon, 1996) and can be summarized as
follows: given a current state and a goal state, choose an action that will lead to a new state
that is closer to the goal state than the current state. �is rule is iteratively applied until the
goal state has been reached or no other state can be found closer to the goal state than the
current state. Obviously, this strategy is a more general counterpart of all formal optimization
heuristics that can be categorized as local search, in which a solution is iteratively improved
using small, incremental operations we have come to callmoves. �e technique of path relinking
(Glover, 1998), in which an incumbent solution is transformed, one move at a time, into a
guiding solution, is another example of a formalized means-end-analysis strategy.

Whereas heuristics (and even metaheuristics) are completely natural to us humans, exact meth-
ods seem to be a very recent invention, coinciding with the introduction of the �eld of Oper-
ations Research around WWII. On the other hand, even though heuristics have been applied
since the �rst life on earth evolved, the scienti�c study of heuristics also had to wait until the
20th century. It could be hypothesized that heuristics are so natural to us, that we had to wait
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until a formal theory of optimization, especially of linear programming, had to be developed
before anyone considered it a topic worthy of study.

3 Period 1: The early period

In 1945, immediately a�er WWII, the Hungarian mathematician George Pólya, then working
at Stanford University, published a small volume called “How to Solve it” (Polya, 2014). In his
book, he argued that problems can be solved by a limited set of generally applicable strate-
gies, most of which serve to make the problem simpler to solve. �e book’s focus was not on
optimization problems, but on the more general class of “mathematical” problems, i.e., prob-
lems that can be modelled and solved by mathematical techniques. Nevertheless, most of the
solution strategies proposed book are equally applicable to develop optimization algorithms.

�e “analogy” principle, e.g., tells the problem-solver to look for another problem that closely
resembles the problem at hand, and to which a solution method is known. By studying the
similarities and di�erences between both problems, ideas can be garnered to solve the original
problem. �e principle of “induction” to solve a problem by deriving a generalization from
some examples. �e “auxiliary problem” idea asks whether a subproblem exists that can help
to solve the overall problem.

Even though it is a bit of stretch to call these principles “meta-heuristics”, it is clear that the
start of the �eld of OR also marks the age during which people start thinking about more gen-
eral principles that are useful in the design of heuristic algorithms (or solution methods for
other types of problems). A case can be made for the fact that many of Pólya’s principle are
still heavily used today by heuristic designers. Looking for similar problems in the literature
or elsewhere, and modifying the best-known methods for them to suit the problem at hand
(analogy), is an extremely common strategy to arrive at a good heuristic fast. Solving some
simple examples by hand, and using the lessons learned from your own (or someone else’s)
perceived strategy to derive an intelligent solution strategy from (induction), is also a useful
technique. Finally, decomposing a problem into smaller subproblems and developing special-
ized techniques for each of them (auxiliary problem) has proven to be a powerful heuristic
design strategy on a large number of occasions.

What is important is that none of Pólya’s strategies actually solve any problem, nor can they be
called “algorithms” in themselves. Instead, they are high-level, meta-strategies that are useful
to in�uence the way a heuristic designer thinks about a problem. In that sense at the very least,
they are very like the more advanced and specialized metaheuristic frameworks that we have
today.

Several very high-level algorithmic ideas also came about around this period. �e fact that
good solutions can be reached by a constructive procedure, for example, is one of them. A con-
structive algorithm is one that starts from an empty solution and iteratively adds one element
at a time until a complete solution has been formed. Simple rules for selecting this element
from the set of all potential elements have led to di�erent types of algorithms. �e greedy
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selection rule selects the best (value for each) element at each iteration. Kruskal’s or Prim’s
algorithm for the minimum spanning tree problem, Dijkstra’s algorithm for the shortest path
problem, etc., are all examples of greedy heuristics (Cormen et al., 2009). Regret algorithms
present a similar class of optimization procedures, that select, at each iteration, the element for
which not selecting its best value results in the highest penalty cost. Vogel’s approximation
method (Shore, 1970) for the transportation problem is a well-known example. Again, calling
the greedy idea or the regret idea “metaheuristics” is a bit of a stretch, but they are high-level
strategies, and they are not algorithms themselves.

Also during this period, Simon and Newell (1958) see heuristics speci�cally as �t to solve what
they call “ill-structured” problems. Contrary to well-structured problems, such problems can-
not be formulated explicitly or solved by known and feasible computational techniques. �eir
predictions in 1958 have turned out to be slightly optimistic, but it cannot be denied that heuris-
tics have turned out to be more �exible problem-solving strategies than exact methods.

Even though the heuristics developed in the early period were very simple, the realization that
high-level strategies existed that could be used as the basis for the development of heuristics for
any optimization problem led to insights that paved the way for more complex meta-strategies.
Together with the widespread availability of computers, these developments took the �eld of
heuristics into the next period in this history, the method-centric period.

4 Period 2: The method-centric period

Even though the frameworks and ideas developed during what we have called the early pe-
riod lacked the comprehensiveness of the later developed metaheuristic frameworks like tabu
search (Glover, 1986), it is not too far-fetched to call them early metaheuristics. Like later
metaheuristic frameworks, these methods o�ered — in the form of some generally applicable
strategies — inspiration for the development of optimization algorithms. Of course, these prin-
ciples still needed to be instantiated for each di�erent optimization problem, but at least the
process of coming up with an optimization strategy did not have to start from scratch.

Much of the work done in the early period can be characterized under the umbrella term of arti-
�cial intelligence because it involves mimicking human problem-solving behavior and learning
lessons from this behavior on a more abstract level. Starting in the 1960’s however, an entirely
di�erent line of research into problem-solving methods came to life. �ese methods used an
analogy with life’s main problem-solving method: evolution.

Evolution by natural selection has been called “the best idea ever” (Chu, 2014). No single idea
explains as much as Darwin’s realization that species evolve over time to adapt to their envi-
ronment. �e way in which this happens, by natural selection of inheritable characteristics, is
both so clever and so simple it begs the question why the world needed to wait until the second
half of the 19th century before someone thought of it. Nevertheless, it took another century
and the advent of the computer before researchers would become interested in simulating the
process of natural evolution.
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Although researchers in the late 1950s and early 1960s had developed what we would now label
as evolutionary algorithms, their main aim was not to solve optimization problems, but to study
the phenomenon of natural evolution. �e insight that the principles of natural evolution could
be used to solve optimization problems in general, came in the early 1960s, when researchers
like Box, Friedman, and several others had independently developed algorithms inspired by
evolution for function optimization and machine learning. One of the �rst methods to receive
some share of recognition was the so-called evolution strategy (as later reported in Rechenberg,
1989). Evolution strategy was still quite far from what we would call an evolutionary algorithm:
it did not use a population or crossover. One solution (called the parent) was mutated and the
best of the two solutions became the parent for the next round of mutation.

Evolutionary programming, introduced a few years later (Fogel et al., 1966), represented solu-
tions as �nite-state machines, but also lacked the concepts of both a population and crossover.
�e true start of the �eld of evolutionary algorithms came with the seminal work of John Hol-
land (Holland, 1975), who was the �rst to recognize the importance of both concepts. With his
schemata-theorem, that essentially states that high-quality schemata (“parts”) of solutions will
increase in frequency in successive iterations of the algorithm, Holland was also among the
pioneers of theory-building in metaheuristics. �e schemata theory was criticised later for its
limited use and lack of general applicability, but it demonstrated that the �eld of metaheuristics
needed not forever be devoid of theoretical underpinning.

It was perhaps the book by (Goldberg, 1989) (a student of John Holland) that truly sparked
the evolutionary revolution. Evolutionary methods became extremely popular, journals and
conferences speci�cally devoted to this topic sprouted and an exponentially increasing number
of papers appeared in the literature. A large number of variants were proposed, each with its
own speci�c characteristics. Extraordinary claims were made, not necessarily grounded in
empirical evidence. �e quest for a generic heuristic optimization method that could solve any
problem e�ciently, without requiring problem-speci�c information, seemed �nally to be on
the right track.

In the 1980’s, the �rst papers start to appear that introduced general problem-solving frame-
works not based on natural evolution. One of the �rst used another metaphor: annealing,
the controlled heating and cooling process used in metallurgy and glass production to remove
stresses from the material (Kirkpatrick et al., 1983). Simulated annealing used random solution
changes and “accepted” these if they improved the solution or, if they did not, with a proba-
bility inversely proportional to the solution quality decrease and proportional to an external
parameter called the “temperature”.

For a while, it might have seemed that the development of metaheuristics was all about �nding
a suitable process to imitate. �e 80s, however, also saw the development of several methods
that reached back to the early period and used ideas derived from human problem-solving.
One of the most powerful ideas was that solutions could be gradually improved by iteratively
making small changes, called moves, to them. To this end, an algorithm would investigate all
or some of the solutions that could be reached from the current solution by executing a single
move. Together, these solutions form the neighborhood of the current solution.
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�reshold accepting (Dueck and Scheuer, 1990), a simple variant of simulated annealing demon-
strated that a metaphor was certainly not necessary to develop a powerful general-purpose
optimization framework. �e great deluge method and record-to-record travel (Dueck, 1993)
di�ered from threshold accepting only by the way in which they accepted new solutions. Still,
each of these were seen as di�erent methods.

Perhaps the most in�uential of the AI-based methods was tabu search (Glover, 1986). �e
basic premise of this framework that a local search algorithm could be guided towards a good
solution by using some of the information gathered during the search in the past. To this end,
the tabu search framework de�ned a number of memory structures, that captured aspects of
the search. �e most emblematic is without a doubt the tabu list, a list that records a�ributes
of solutions and prohibits, for a certain number of iterations, any solutions that exhibit an
a�ribute on the tabu list.

�e same paper that introduced tabu search also coined the word “meta-heuristic” (Glover,
1986). However, not everybody agreed with this term and a push was made to use the (more
modest) term “modern heuristics” instead. Clearly, not everybody agreed that the limited set
of metaheuristics proposed by the 1980s had a higher-level aspect to them. Many still viewed
them essentially as (admi�edly, more complicated than their simple counterparts) algorithms,
i.e., unambiguous step-by-step sets of operations to be performed. Indeed, it is very common
in the late 80s for a “new metaheuristic” to be described based on a �owchart or another typical
algorithmic representation. �e widespread realization that metaheuristics could and should be
viewed as general frameworks rather than as algorithms, would come during the next period,
the framework-centric period.

Interestingly, neural networks (Hop�eld, 1982) were among the limited list of metaheuristics
proposed by the late 1980s. �ese methods imitate the functioning of a brain (including neurons
and synapses) and were originally proposed in the context of pa�ern recognition (for which
they are still mostly used).

By 1995, research in metaheuristics had grown to a level that could sustain its own conference
series and thus the MIC (Metaheuristics International Conference) series was established. In the
same year, the �rst issue of the Journal of Heuristics1, the only journal dedicated to publishing
research in metaheuristics, was published.

Several other frameworks that had been proposed around the early 90s, also gained increas-
ing interest during the mid 90s. �e innovation proposed in the GRASP (greedy randomized
adaptive search procedure) framework was to modify a greedy heuristic by selecting at each
iteration not necessarily the best element, but one of the best elements randomly (Feo and Re-
sende, 1995). Similarly, Ant Colony Optimization (Colorni et al., 1992) proposed not only to mix
deterministic and stochastic information, but also proposed a way for solutions to exchange
information.

By the second half of the 1990’s, however, it gradually became clear that metaheuristics based
on metaphors would not necessarily lead to good approaches. �e promised black-box optimiz-

1http://link.springer.com/journal/10732/1/1/page/1
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ers that would always “just work” and that had a�racted so much a�ention, seemed elusive.
Even the theoretical studies lost some of their shine. �e convergence results obtained for
simulated annealing (Granville et al., 1994), because they only worked when an in�nite run-
ning time was available, were not as compelling for practical situations as initially thought.
Similarly, the automatic detection of good building blocks by genetic algorithms only really
worked if such building blocks actually existed, and if they were not continually being de-
stroyed by the crossover and mutation operators operating on the solutions. Even though the
early metaheuristic frameworks o�ered some compelling ideas, they did not remove the need
for an experienced heuristic designer. �e advent of metaheuristics had not changed the simple
fact that a metaheuristic that extensively exploited the characteristics of the optimization prob-
lem at hand would almost always be superior to one that took a black-box approach, regardless
of the metaheuristic framework used.

In general, researchers during the method-centric period proposed algorithms, i.e., formalized
structures that were meant to be followed like a cook book recipe. More o�en than not, the
“new metaheuristic” was given a name, even when the di�erence between the new method
and an existing method was small.

5 Period 3: The framework-centric period

�e insight that metaheuristics could be more usefully described as high-level algorithmic
frameworks, rather than as algorithms, was a natural thing to happen. �e main indicator
that this mindset change was taking place — a change that has given rise to a period that we
have dubbed the framework-centric period — is the increasing popularity of so-called “hybrid”
metaheuristics during the early 2000s. Indeed, this period could by rights have been called
they “hybrid metaheuristic period”. Whereas earlier researchers used to restrain themselves to
a single metaheuristic framework, more and more researchers around the turn of the century
combined ideas from di�erent frameworks into a single heuristic algorithm. Some combina-
tions became more popular than others, like the use of a constructive heuristic to generate an
initial solution for a local search algorithm, or the use of GRASP to generate solutions that are
then combined using path relinking.

One type of hybrid metaheuristic even received a distinct name: the use of local search (or any
“local learning” approach) to improve solutions that are obtained by an evolutionary algorithm
was called a memetic algorithm (Moscato, 1989). In 2004, the term “hybrid metaheuristic” had
become common, and a new conference series with the same name was started.

�e hybridization of metaheuristics, however, did not restrict itself to a combination of a meta-
heuristic with another metaheuristic. Opening up the individual algorithmic frameworks, al-
lowed researchers to combine a metaheuristic with any auxiliary method available. Constraint
programming, linear programming and mixed-integer programming, were all used in combi-
nations with ideas from metaheuristics. �e combination of metaheuristics and exact meth-
ods was coined “matheuristics” (Maniezzo et al., 2010) (though these methods too had many
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antecedents in the metaheuristics literature). In 2006, the �rst edition of the Matheuristics
conference took place.

Soon a�er its introduction, the term “hybrid” metaheuristic would become obsolete, as re-
searchers made a general transition from seeing metaheuristics as algorithms of which some
components could be borrowed by other metaheuristics, to general sets of concepts (“frame-
works”). �e “metaheuristic framework” concept entailed that metaheuristics were nothing
more (or less) than a more or less coherent set of ideas, which could of course, be freely com-
bined with other ideas. Today, many researchers develop metaheuristics using their experience
and knowledge about which methods will work well for certain problems and which most likely
will not.

Some general pa�erns started to appear in the literature on which methods work well for
which problems, and the community gravitated towards approaches that always delivered.
For almost any variant of the vehicle routing problem, e.g., a large majority of approaches use
some form of local search as their main engine, generally in a multi-neighborhood framework
like variable neighborhood search (Mladenović and Hansen, 1997). �e use of several di�erent
local search operators or the use of several di�erent constructive procedures in general is now a
well-regarded strategy and o�en used as the �rst choice by heuristic designers. Clearly, variable
neighborhood search presented a framework within which the use of multiple neighborhoods
could be captured, but many other ways of combining several local search operators in a single
heuristic are possible.

Crucial in this period, which is still ongoing, is that researchers do not have to propose a “new
algorithm” anymore to get their papers published. By combining the most e�cient operators
of existing metaheuristic frameworks, and carefully tuning the resulting heuristic, algorithms
can be created that solve any real-life optimization problem e�ciently. Researchers can now
focus on studying a single, mundane aspect of a metaheuristic framework in detail like, e.g.,
its stopping rules (Ribeiro et al., 2011).

Traditionally, the metaheuristic community has put a heavy focus on performance. Research is
only considered good if (and only if) it produces a heuristic algorithm that “performs” well with
respect to some benchmark, such as another heuristic or a lower bound. �is has been called
the “up-the-wall game” (though it might also be called the “one-upmanship game”). All other
contributions (e.g., heuristics that are many times simpler than the best-performing heuristic
in the literature, studies on heuristics that should perform well but for some reason do not,
. . . ) are much more di�cult to publish. However, several researchers have pointed out the
adverse e�ects of this paradigm (which e�ectively reduces science to a game), and some recent
contributions that go beyond the up-the-wall game demonstrate the framework-centric period
is gradually transforming into the scienti�c period. In this period the study of metaheuristics
will shi� its focus from performance to understanding. Unfortunately, however, not all of the
metaheuristics community makes the transition to the framework-centric period, and we are
forced to report on a period which essentially runs in parallel with this period.
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6 The metaphor-centric period

Starting in the 1980s a sub-�eld has arisen of research (we hesitate to put quote marks around
the term for reasons that will be explained below) that focuses on the development of new
metaheuristic methods based on metaphors of natural or man-made processes. In our history,
this period has not been assigned a number because it does not �t chronologically between the
other periods, but rather is a sidestep that happened (and is still happening) in parallel to the
framework-centric period.

Although metaphors had been useful in the development of early metaheuristics as a source of
inspiration for the development of novel frameworks, it has always been evident to many that
a metaphor is only a metaphor and always breaks down at a certain point. It is therefore useful
for inspiration, but not necessarily everything about it usefully translates to a metaheuristic
framework. Importantly, a metaphor is not enough to justify metaheuristic design choices or
to create a foundation for completely new metaheuristics.

In recent years, however, a di�erent a�itude seems to have taken hold of a sub�eld of the
metaheuristics community. �e aim of the “metaphor-based” sub�eld seems to center entirely
around the development of “novel” metaphors that can be used to motivate new metaheuristics.
�e list of natural and man-made processes that have inspired such metaheuristic frameworks
is huge. Ants, bees, termites, bacteria, invasive weed, bats, �ies, �re�ies, �reworks, mine blasts,
frogs, wolves, cats, cuckoos, consultants, �sh, glowworms, krill, monkeys, anarchic societies,
imperialist societies, league championships, clouds, dolphins, Egyptian vultures, green herons,
�ower pollination, roach infestations, water waves, optics, black holes, the Lorentz transfor-
mation, lightning, electromagnetism, gravity, music making, “intelligent” water drops, river
formation, and many, many more, have been used as the basis of a “novel” metaheuristic tech-
nique.

Moreover, there does not seem to be any restriction on the type of process that can be trans-
lated into a metaheuristic framework. One would expect that, at the very least, the process
that is to become the basis for a metaheuristic should optimize something (e.g., an annealing
process minimizes the energy level, natural evolution minimizes the discrepancy between the
characteristics of a species and the requirements of this species’ environment, ants minimize
the distance between their nest and their source of food). Nevertheless, many metaheuristic
frameworks can now be found based on processes that by no stretch of imagination can be said
to optimize anything, like �reworks, mine blasts, or cloud formation.

Both the causes and the consequences of this “metaphor fallacy” have been extensively dealt
with in a number of other publications (Sörensen, 2015; Weyland, 2010) (short summary: it is
not science) and this is not the place to repeat all the arguments why metaphor-based meta-
heuristics are a bad idea. Nevertheless, metaphor-based “novel” metaheuristics take up a (dark)
page in the history of metaheuristics. A page that should be turned quickly.
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7 Period 4: The scientific period?

For a long time, the �eld of metaheuristics has had di�culties to be taken seriously. In 1977, one
of the authors of this chapter wrote “[exact] algorithms are conceived in analytic purity in the
high citadels of academic research, heuristics are midwifed by expediency in the dark corners
of the practitioner’s lair [. . . ] and are accorded lower status.” (Glover, 1977) Traditionally, the
theoretical underpinning of heuristics and metaheuristics has not been on par with that of
other areas in OR, more speci�cally exact methods. �e development of heuristic optimization
algorithms, whether using a metaheuristic framework or not, is guided by experience, not
theory. Early a�empts to �rmly ground the development of metaheuristics in theory have not
delivered upon their promises. Understanding the behavior of metaheuristics on a fundamental
level has proven to be a di�cult task, notwithstanding several noteworthy e�orts (e.g., Watson
et al., 2002, 2003).

Nevertheless, it is hard to argue with success. �e obvious usefulness of metaheuristics in prac-
tical optimization problems has drawn researchers to improve the frameworks and methods
developed. To solve a large majority of real-life optimization problems, heuristics are and will
remain the only option, whether developed using a metaheuristic framework or not. Neverthe-
less, there are many things that can be improved about the way the metaheuristic community
operates. To list just a few:

• �e establishing of adequate testing protocols, to ensure that algorithms perform as well
as they are claimed to do.

• �e introduction of meta-analysis (i.e., a review of a clearly formulated question that
uses systematic methods to identify, select, and evaluate relevant research, as well as to
collect and analyze data from relevant studies) to the �eld of metaheuristics (Hva�um,
2015).

• �e requirement to disclose source code, so that researchers can check and build on each
other’s work without in a more e�cient way, without reinventing the wheel.

• �e development of powerful general-purpose heuristic solvers to decrease development
time, like CPLEX or Gurobi, but then heuristically. LocalSolver seems to be on the right
track.

• Supporting these general-purpose solvers, the development of a powerful and generally
accepted modeling language, geared more towards the development of heuristics and
less towards the MIP-paradigm.

• . . .

Most importantly, the change from a performance-driven community to a community in which
scienti�c understanding is more important, will take place during the scienti�c period. Without
doubt, this will lead to the development of even be�er heuristics, even more e�cient, but it will
also lead to heuristics that are usable outside of the developer’s lab environment.
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8 Conclusions

Describing the history of the �eld of metaheuristics in a few pages is not an easy undertaking
and completeness is a goal that simply cannot be achieved. In this chapter, we have a�empted
to clarify the evolution in this �eld by not focusing exclusively on important events or pub-
lications, but by a�empting to identify the important paradigm shi�s that the �eld has dealt
with. What is certain, is that the use of metaheuristics is older, much older, than the term itself.
As mentioned, our brain itself houses some powerful metaheuristics that have helped humans
survive from the dawn of mankind. �e scienti�c study of metaheuristics, however, had to wait
until the second half of the previous century.

Scienti�c communities invariably develop a conceptual framework within which a few axioms
are held to be true. �is can also be said of the metaheuristics community. It is those shared
truths that we have a�empted to uncover in this chapter. Even though the �eld of metaheuris-
tics is still young, it has already undergone several paradigm shi�s, that have changed the way
researchers look upon the development of heuristic optimization methods.

�e transition from the method-centric to the framework-centric period has been bene�cial for
the entire community, and there is no doubt that the transition towards the scienti�c period
can take the �eld further into the right direction. Metaheuristics are a fascinating area of study
with highly signi�cant practical rami�cations and the �eld will certainly keep on evolving in
the foreseeable future. �ere is no doubt that a more scienti�c, less dogmatic, and broader
point of view can help us all in achieving our goals: the development of e�cient methods to
solve the most challenging and important real-life optimization problems.
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