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Methodology

I High-level perspective
I Not an annotated chronological bibliography
I Attempt to discover paradigm-shifts
I No futile attempts to adopt a neutral perspective



What is a heuristic?

x∗ = argmax
x∈X

f (x)

Exact method
Optimization method with
guarantee of optimality

Heuristic
Optimization method without
guarantee of optimality



What is a metaheuristic?

Metaheuristic ver. 1
(framework)
A metaheuristic is a high-level,
problem-independent algorithmic
framework that provides a set of
guidelines or strategies to develop
heuristic optimization algorithms.

Metaheuristic ver. 2
(algorithm)
The term is also used to refer to
a problem-specific
implementation of a heuristic
optimization algorithm according
to the guidelines expressed in
such a framework.
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Five periods of (meta)heuristics

1. The pre-theoretical period (until c. 1940)
2. The early period (c. 1940 – c. 1980)
3. The method-centric period (c. 1980 – c. 2000)
4. The framework-centric period (c. 2000 – now)
5. The scientific period (the future)



The pre-theoretical period

I Optimization problems are all
around us

I The human mind is naturally
equipped with an incredibly
versatile heuristic solver

I It has meta-strategies
(“meta-heuristics”) too, e.g.,
I learning by analogy
I greediness
I most difficult first
I means-end-analysis (“local
search”)

I don’t do something that failed in
the past (“tabu search”)

I . . .

Sörensen’s conjecture
In the real world, solving
optimization problems
using exact methods is a
waste of resources.
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The early period

I After WWII
I Coincides with development of OR
I “How to solve it” (1945)

I “Analogy”
I “Induction”
I “Auxiliary problem”

I High-level algorithmic ideas
1. Constructive heuristics
2. Regret algorithms

George Pólya



The early period

I Artificial
intelligence as
the basis for
heuristic design

I Realization
that some
ideas on the
design of
heuristics can
be generalized



The method-centric period

I From the 60s: evolutionary methods
I Evolution strategies (Schwefel, Rechenberg) – no population or
crossover

I Genetic algorithms (Holland, Goldberg): population + crossover
I Theoretical studies to “prove” convergence
I General sentiment: an all-powerful black-box optimizer within
reach

I 1980s: another metaphor: simulated annealing
I 1980s: more AI-based methods

I Local search
I Threshold accepting
I Tabu search
I A few more



Meta-heuristics introduced
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FUTURE PATHS FOR INTEGER PROGRAMMING AND LINKS TO 
ARTIFICIAL INTELLIGENCE 

FRED GLOVER* 

Center for Applied Artificial Intelligence, Graduate School of Business, University of Colorado, 
Boulder, CO 80309, U.S.A. 

Scope and Purpose--A summary is provided of some of the recent (and a few not-so-recent) developments 
that offer promise for enhancing our ability to solve combinatorial optimization problems. These 
developments may be usefully viewed as a synthesis of the perspectives of operations research and artificial 
intelligence. Although compatible with the use of algorithmic subroutines, the frameworks examined are 
primarily heuristic, based on the supposition that effective solution of complex combinatorial structures in 
some cases may require a level of flexibility beyond that attainable by methods with formally demonstrable 
convergence properties. 

Abstract-Integer programming has benetited from many innovations in models and methods. Some of the 
promising directions for elaborating these innovations in the future may be viewed from a framework that 
links the perspectives of artificial intelligence and operations research. To demonstrate this, four key areas 
are examined: (1) controlled randomization, (2) learning strategies, (3) induced d~omposition and (4) tabu 
search. Each of these is shown to have characteristics that appear usefully relevant to developments on the 
horizon. 

I. INTRODUCTION 

Integer programming (IP) has gone through many phases in the last three decades, spurred by the 
recognition that its domain encompasses a wide range of important and challenging practical 
applications. Two of the more prominent landmarks in the development of the field have 
undoubtedly been the emergence of the cutting plane and branch and bound approaches. As general 
solution strategies, these approaches have drawn on concepts from diverse areas including number 
theory, group theory, logic, convex analysis, nonlin~r functions, and matroid theory [l-7]. 

From the theoretical side, cutting planes have received the greatest attention, though from a broad 
perspective the distinction between cutting plane and branch and bound methods blurs. Indeed, 
branch and bound may be viewed as provisional cutting. From the practical side, the most effective 
general purpose methods have relied heavily on branch and bound, conceiving branch and bound in 
its standard (narrower) sense, where the collection of provisional cuts derives simply from 
constraining integer variables to satisfy lower and upper bounds. Doses of cutting plane theory have 
been used to improve the basic branch and bound framework, chiefly by generating cuts to be added 
before initiating the branch and bound process (or in some cases just prior to selecting a next branch) 
[S-14]. The cuts used, however, are typically those that are easily derived and generated. The more 
labyrinthine and esoteric derivations have not so far demonstrated great practical utility. 

Implicit in cutting methods and branch and bound methods are the allied notions of problem 
relaxation and restriction (enlarging and shrinking the feasible region) [15-20]. Problem relaxation 
has found particular application by means of the Lagrangean and surrogate constraint strategies, 
both of which have achieved their greatest successes on problems with special structures [21-251. 
Indeed, it is often noted that the chances of developing a widely effective general purpose method are 
slim. Many of the interesting practical IP problems have very evident special structures, and the 
diversity of these special structures is sufficient that a procedure designed to do well for one of them is 
very likely, on the basis of experience in the field, to do poorly for many others. 

This is not to say that certain principles, adapted appropriately to different settings, may not prove 
of wide value. On the contrary, a growing collection of such principles marks precisely the direction in 
which the field of IP methodology is evolving. We have already inherited a number of these from the 

~._.. _..______ 
*Fred Glover received the doctorate from Carnegie-Mellon in 1965, and served on the faculty at the University of 

California, Berkeley, and the University of Texas and the University of Minnesota. He is the author of over 150 published 
papers in Management Science and related fields. 
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Discussion
“Meta” or “Modern”
heuristics?



The method-centric period

I General sentiment: metaheuristics as
recipes

I Neural networks
I New methods

I GRASP
I Ant colony optimization

I Second half of the 1990s: disappointment
over reachability of über-powerful
black-box optimizers

I No free lunch theorem

1995
Metaheuristics
International
Conference MIC

1995



The framework-centric period

I Introduction of hybrid metaheuristics
(e.g., memetic algorithms)

I Mix-and-match of metaheuristic
components

I Realization that metaheuristics should be
seen as frameworks, rather than methods.

I Matheuristics

2001



The metaphor-centric period
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Swarm intelligence based algorithms Bio-inspired (not SI-based) algorithms
Algorithm Author Reference Algorithm Author Reference
Accelerated PSO Yang et al. [69], [71] Atmosphere clouds model Yan and Hao [67]
Ant colony optimization Dorigo [15] Biogeography-based optimization Simon [56]
Artificial bee colony Karaboga and Basturk [31] Brain Storm Optimization Shi [55]
Bacterial foraging Passino [46] Differential evolution Storn and Price [57]
Bacterial-GA Foraging Chen et al. [6] Dolphin echolocation Kaveh and Farhoudi [33]
Bat algorithm Yang [78] Japanese tree frogs calling Hernández and Blum [28]
Bee colony optimization Teodorović and Dell’Orco [62] Eco-inspired evolutionary algorithm Parpinelli and Lopes [45]
Bee system Lucic and Teodorovic [40] Egyptian Vulture Sur et al. [59]
BeeHive Wedde et al. [65] Fish-school Search Lima et al. [14], [3]
Wolf search Tang et al. [61] Flower pollination algorithm Yang [72], [76]
Bees algorithms Pham et al. [47] Gene expression Ferreira [19]
Bees swarm optimization Drias et al. [16] Great salmon run Mozaffari [43]
Bumblebees Comellas and Martinez [12] Group search optimizer He et al. [26]
Cat swarm Chu et al. [7] Human-Inspired Algorithm Zhang et al. [80]
Consultant-guided search Iordache [29] Invasive weed optimization Mehrabian and Lucas [42]
Cuckoo search Yang and Deb [74] Marriage in honey bees Abbass [1]
Eagle strategy Yang and Deb [75] OptBees Maia et al. [41]
Fast bacterial swarming algorithmChu et al. [8] Paddy Field Algorithm Premaratne et al. [48]
Firefly algorithm Yang [70] Roach infestation algorithm Havens [25]
Fish swarm/school Li et al. [39] Queen-bee evolution Jung [30]
Good lattice swarm optimization Su et al. [58] Shuffled frog leaping algorithm Eusuff and Lansey [18]
Glowworm swarm optimization Krishnanand and Ghose [37], [38] Termite colony optimization Hedayatzadeh et al. [27]
Hierarchical swarm model Chen et al. [5] Physics and Chemistry based algorithms
Krill Herd Gandomi and Alavi [22] Big bang-big Crunch Zandi et al. [79]
Monkey search Mucherino and Seref [44] Black hole Hatamlou [24]
Particle swarm algorithm Kennedy and Eberhart [35] Central force optimization Formato [21]
Virtual ant algorithm Yang [77] Charged system search Kaveh and Talatahari [34]
Virtual bees Yang [68] Electro-magnetism optimization Cuevas et al. [13]
Weightless Swarm Algorithm Ting et al. [63] Galaxy-based search algorithm Shah-Hosseini [53]

Other algorithms Gravitational search Rashedi et al. [50]
Anarchic society optimization Shayeghi and Dadashpour [54] Harmony search Geem et al. [23]
Artificial cooperative search Civicioglu [9] Intelligent water drop Shah-Hosseini [52]
Backtracking optimization search Civicioglu [11] River formation dynamics Rabanal et al. [49]
Differential search algorithm Civicioglu [10] Self-propelled particles Vicsek [64]
Grammatical evolution Ryan et al. [51] Simulated annealing Kirkpatrick et al. [36]
Imperialist competitive algorithm Atashpaz-Gargari and Lucas[2] Stochastic difusion search Bishop [4]
League championship algorithm Kashan [32] Spiral optimization Tamura and Yasuda [60]
Social emotional optimization Xu et al. [66] Water cycle algorithm Eskandar et al. [17]

Table 1. A list of algorithms
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Where are we now?

I Metaheuristics have lived up to
their promise: heavily used in
real-life systems

I Widespread agreement that
metaheuristics are not recipes

I Still: not a lot of “solvers”, still
largely an art



Where are we now?

Taxonomy of metaheuristics creates clarity

MH

Local Search Constructive Evolutionary

Randomness Memory VNS



The future: the scientific period

I Growing up of the field of metaheuristics
as a science
I Understanding the behavior of
metaheuristics

I Adequate testing protocols
I Decomposition
I Knowledge > performance

I Development of powerful solvers to
decrease development time

I A more natural language to formulate
optimization problems

I Availability of dedicated tools, including
exact methods and constraint
programming
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