LocalSolver7.0

ERF5IE

MSI U= AL
2017/6/1

B
1. L0CalS0IVET & hd oo e

2. LocalSolver DT I IEERIETD) - .ee oottt

2.1 LSP 7 57 A IV D T T oot
2.2 B T R ettt
3. LocalSOoIVer (T D TEZAL ... oot
3.1 LSP BT U L T DB R TT oo
3.2 LSP T D00l ZEELIDTETR oottt
3.8 LISP TET /L ettt

A1 FUDNCEION e

B, T B T oottt et et et et e s et e s et e n et erenerer e
O == Y ORI

Ad R T T = R T et aan 12

[1] TR T B3 oo 16
CRE=320 Bic kOO 18
[£16 3] LSP ERBELE ..o 21
(£ 4] o FNT O T T A EREITIER e, 22
[£16% 5] LSPEFE BNF SyNtax.......ocoocoooioioieieeeeeeeeeeeeeeeeeeeeeee e 25
[£765 6] LoCAlSOLVET FTHEBE ..o oottt 32

MSI #2&4 Copyright © 2017. All Rights Reserved

1. LocalSolver & %

LocalSolver7.0 1%, KR MRIEZ EHRFHN THRLICKRD L L2 A
&L LWEEEGETEVE Y AT L TH D,

LocalSolver |37 7 A®D 6 ADO# T OR EEEE D 10 FOmk H 2T TE% L
72D THY, All'In-One Solver & LT, MIP (BRAZEHGHHEE) . CPGHIHIG
H7a 277 I7), NLP GE#EHEE) . LP (BEsTHEE) ML 2 &R
T& %, FrlZ, MIP, CP TIFBIEMICHRT oW KB R LISk LT, A
Za—V AT 47 A (m—=NY—F) Rt ST fiEa o 7o, Rt
DOPHHETENE S AT LA ThH D,

2. LocalSolver DE{TH1: (BERER)

LocalSolver | PC, Unix, MAC ®ZiZ4 T 32bits £ 7213 64bits €E— KT
B4 5,

LocalSolver {3 C++TRHF SN TEY . FAT7 07 T A BERTEHNT 2T TR
<. C++, Java, C#., Python D7 0 7T AMLRESZ LN TE 5,

LocalSolver |31 > % =7V Z—BOFET T 0 7T L EHEFTTHI LNTE
5, A& —71U % —BIT LocalSolver %173 25A1213, EFTOBEBE 7 v/
FIVTHNR—=ALLIZLSP 77 AV (xxxIsp) Z1ERE L, /XT A—% & LTLSP
T ANERET DLEND D,

F7-. LocalSolver M T D7 T AT A4 77V &> Z LT, ZhR L, C++,
Java, C# (mnet). python T. BT 252 LB RETH 5,

AKFF a2 A hTiE PC (32bits iit) T DOS da~vr F7 a7 hipb
LocalSolver Z [E#FE1T3 26l 273 %,

LocalSolver % #1714 5 7-8121%. Localsolver A4 > A h—L L, 914 A%
BT AVNEND S, FOFIEICHONTIL, U TFE2SR I,

https!//www.msi-jp.com/localsolver/download/

MSI #2&4 Copyright © 2017. All Rights Reserved

https://www.msi-jp.com/localsolver/download/

2.1 LSP 7 7 A VDELT

A A=V ENTENEETRT,

localsolver 7 0 7 4 /%

| — Dbin . FI77' 1 77 A localsolver.exe
| — docs : LSP, C++, C#, Java D7 T A7 A4 75 DA
| — examples : SR
| — include
license.dat CHODOPCHDI AU AF—ITEEHZ D,

1) FE1TFIE
DOS a2~ R7 e 7 haib L5,
LSP 7 7 A VB ASTND T ANFXIZT 4 L7 M) BT,
#1) cd C:¥localsolver_7_0¥examples¥toy
LSP 7 7 A W4 Z$57E LT, localsolver.exe % 379 %,
f5) localsolver toy.lsp IsTimeLimit=1
XLSP 7 7 A V4 : toy.lsp,
#/X T A H IsTimeLimit |35/ TR 2 1 7 & F87E,

2) LSP 7 7 A /LD

Z Z T, examples¥toy @ LSP 7 7 A /Litoylsp &7~ 7,
Toy 7 /W%, T 7V 7RETH D,
s, 8dH Y, ENENDOES LHELL FICERT D,
#H X 010, 60, 30, 40, 30. 20, 20, 2 kg
il : 1. 10, 15, 40, 60, 90, 100, 15 [
Ty 7Yy 713 mE K 102kg F TERHEAND Z LN TE, AMESRKRIZR D
X9, Foi@L L0, EORFOAMEIZN S BIZ72 200 ETH 5,
LSP i X 5 EX(bZLLFIZRd (toylsp 7 7 A VOWNE),

[tk 1oy, |Sp *kkkkkkkk/
function model ()

{
// 0-1 decisions

X_0 <= bool (): x_1 <= bool); x 2 <~ bool); x_3 <~ bool ();

MSI #2&4 Copyright © 2017. All Rights Reserved

x_4 <= bool); x_5 <~ bool); x_6 <= bool (): x_7 <= bool) ;
// weight constraint
knapsackWeight <— 10kx_0 + 60%x_1 + 30%x_2 + 40%x_3 + 30%x_4 + 20%x_5 + 20%x_6 + 2xx_7;
constraint knapsackWeight <= 102;
// maximize value
knapsackValue <— 1#x_0 + 10%x_1 + 15%x_2 + 40%x_3 + 60*kx_4 + 90xx_5 + 100%x_6 + 15%x_7;
maximize knapsackValue;
to

MARFIITHRIEE, ZOHITIEL. model) PBI%T., 77— LHilf, BRI Z &
LThd,

¥%bool 0N EERELE A EM L, bool) CERINTLEHD O & 1 DEOHMAET%E
EHIZEHMIT 5 Z & T, i ek 5,

2.2 FATHER

2.1 T/RLT7- toy £T /L (toylsp 7 7 A /V) DOFEITHERZ LI FITRT,

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:¥Users¥Miyazaki-MSDD>cd C:¥localsolver_7_Owith64¥examples¥toy

C:¥localsolver_7_0with64¥examples¥toy>localsolver toy.lsp IsTimeLimit=1
LocalSolver 7.0 (Win64, build 20170502)

Copyright (C) 2017 Innovation 24, Aix—Marseille University, CNRS.

All rights reserved. See LocalSolver Terms and Conditions for details.
Load toy.Isp...

Run model...

Preprocess model 100% ...

Close model 100% ...

Run param...

Run solver...

Initialize threads 100% ...

Push initial solutions 100% ...

Model:
expressions = 38, operands = 50
decisions = 8 (bool = 8, int = 0, float = 0, list = 0),
constraints = 1, objectives = 1, constants = 11
Preprocessing transformed 11 expressions

Param:
time limit = 1 sec, no iteration limit

MSI #2&4 Copyright © 2017. All Rights Reserved

seed = 0, nb threads = 2, annealing level = 1

Objectives:
Obj 0: maximize, bound = 331

Phases:
Phase 0: time limit = 1 sec, no iteration limit, optimized objective = 0

Phase 0:

[0sec, 0itr] : obj = 280
[1sec, 137637 itr]: obj= 280
[1sec, 137637 itr]: obj= 280

137637 iterations, 275164 moves performed in 1 seconds
Feasible solution: obj = 280

C:¥localsolver_7_0with64¥examples¥toy>

B IR IITE 2,

x_2(30,15), x.4(30,60), x5(20,90), x_6(20,100), x_7(2,15)D5fHTHY
HEOEFHT 102kg, iEOAFHT 280 & 725,

WATE 412 toy2. 1sp & LT, output function Zf#> CTE X 2 LT-H & ~7,

FATe 7, R REn D,

- [1sec, 137637itr] :#XWAFRG. A X L—3 v (RO

— obj =280 :BaIEIHIE
— 137637 iterations, 275164 moves performed in 1 seconds
— Feasible solution: obj = 280

— 275164 moves FEHITEI (I FRALYREFHDIEL— a2 $)
Fr R E S TH DY O N2 £ 7203, FTAREM S U < 1T 2 HE L2 se
2. LTFD 3 2OMRREAHTIT 5,
- infeasible : FATRAIREM
- feasible : FE{THHREIRAE
- optimal : ExiEfiE

MSI #2&4 Copyright © 2017. All Rights Reserved

3. LocalSolver iz & 5 E=4k

LocalSolver DEFAUITEHIRELB A ERT L ENBIEE D,

BHBREEEIZIZMoo) & LTEFEK LT 0-1 B4, ETIREZF LS Gnt), £
TIRZROFEHEH(float), (list) & LTERT LY hOMAEENGRY | BEER
EEBOMEZ S, BEHITORE ZHATT 5 2 & T, REIBR LR E L 5
HENZIRLS ZEDBERDB X FHThH D,

bool ZE DA T & % 1000 HE# &2 THFEMREWRTHREZRDH Z ENT
&%, bool ZHTEELILESREERBOMEELZDOL & TEITHHEL 725 bool
BRI T 2B S R EREE L T < 728, LocalSolver FHIZERILT 572121,
UTORICEET D2 0ERH L,

T Yy VRED L O IZHKMFICAE O M E RSO BRI THIUL, M E 5D
X2 E bool AL L CERTIVUEEY, &5 MMi&IIN=%54. bool %k
S TR OE S K OMIEZ BE#FHH TE 5729, bool 224 DFAEH THIKIS:.
HRVBB A5 Z LN TE 5,

LocalSolver7.0 Cix, 73k MIP [fEZ# > Z LN TE, {bitE&Hic~T
VT NINT U RZRD, EZTMENSOHED MED DEEX L LTRDD ZENT
X5, ZO%HE, ILRELEORERE A RO D EEEREE LT, AEEEEOLEK
% float B & LTERL, o MEDRWERD D EERELEE %, bool £ L LT
EFRT UL TERIT bigM 2 H U CTREEAHT 2 BN & - o 23 Hhiy 2 g Ak
IIARETH D),

MI-72 Ly BEAFO MIP RO ERAL TR, HERDPLT L HHEL R0,

LocalSolver (i L 7= EER D EETH 5,

31 LSPET V7 DEZT

UTOFIETET) 752479,
1) EEREZEH(bool ZH K O float B HE) & EEKT D,
2) bool ZHNEIINT-HEIT, HilK), HRIBEESLE L TLHE (FEES)
R L LTEWIGEITIL, float B TERTHIENTEX S,
3) bool ¥} O float 228 &V, HilKISM:, BB AE ERT 5,
O, MIP O X 52, MIEHIRICZ Zb b 0B <, #IEMt:. B
Bl L b, FIFRIERBNFRETH D,

MSI #2&4 Copyright © 2017. All Rights Reserved

3.2 LSP T® bool Z# D EF
LLTF I SR 70 B RE A 1 bool ZBELDEFRA A — V&,
— FTy 7Yy /i Xp (p :)

— Jb— MEIREE . Xr (r:v—"H)
— FRWTETEIRTE - Xp,q (p : & Z—2 q : "NFZ—2 O HEE)

— ANEBERE : Xp,tj (p: AB. t W, j :T¥a>)
— NG Xe,p (c :®Hili, p : KV ar (EE))
— SCM: Xtijkp@: 8, i: T, j: T4, k: A, p: 85

— AT TVa—Ur7 :Xtijp GBS, 1 T, j: 740, p o 2R

LocalSolver T3 E LA LD bool B2 A EFKT 5 Z LN TE, MIP OERAk &
W, A=A BECERREE S (boo) X EET HZ LT, LV, BRRETOERN
ARE L 72D,

LocalSolver7.0 1%, &) OFHHFIENT TEATvHefif 2 KO D720, FIHE B FATRATHE
PEE T ITOFATRIREME 2 B T D B0,

3.3 LSPE7 /L

LSP €7 /WiE, LTOEZRNOHERIND,
HERELEL : bool), float (FRRE, EFRME) . int (FERE. EBRE). listO
BIAEEBCREOEETHY 7al I3 TabhRdT5ZLNRTED,
EREOERITIT, <— ZHEHT 2,
fil% : constraint (THJEE) T, HIKFHELZERT D,
constraint il CTER SNIMENFATRIREMEOHE CHEH S 5,
HAIBI%L : minimize (THIFE) F 7213 maximaize (THIGE) THMIBEHZER
T 5, BRBIEUIEEERFIRETH Y | EFR I NTNEF TR b 21T
97, BRIGHEEE L CHRIFRIEETH D,

MSI #2&4 Copyright © 2017. All Rights Reserved

4. LSP

Hllll
g{:‘-{l

LSP SikIE, RE(LREZET /UL L, ET NVORGE,R CFOBGEZIT D 7 =— X
TORITHIRZAT O OITRE LR 27T L2 A E LTHRESA TV D,

LSPEFEIL., HTOBKAE Y /I IV V5 TH D, BB Ty IV V55
DFFRIE, BHERZ A -5 CH H 7D, JavaRCErE & B2 | a3 03
BT — X OFEEHEET 5720, T—XOfE () 2707 7~ EET D4
LR, ZOREE, 70T AOLRITRuby e FERBESFED L O IR TH D,

FESHECIHERATE RV AL 70T T L0OF =y 7 NAREIC/R D
BZH D,

LSPEFEDORHBITILLT

—HIZBARE TE D (BARAEEMDS RV, TERICHT, 1/602b1/20B% &)

— T EMZRTV (TS IR ORENEZ BEINICT = 77 5)

—7 7V —a COMREE R EIETW

— ROV TNVRET Y VU EE (TELHRETHEKRTE D X I
MAKBERE CHHINRMEL T =2 RS TWIE, THTET U V7 L5
ITINFIRE T H D

—AERUEIE) ——FATHRRFFIZTE D (—2iF=T 4%, b9 —2iF DOS =2~
K77 hNOZo00 A RUEBIELZNOHBNARETH 5,

— HAEHEED X 5 I BB EZBEBSICRET 52 LN TE L7720, ET VORFEK
OMRDIRGE R BePEIIZATH 2 LN TE D,

WAHEEE3 12 1sp ik & C++, Java, CH# TR L7261 %2R,
4.1 Function
LSPIZAA Tl T AN UTFD5 DR T 7o arhbinb,
function model)IZMZETH D03, T DMITMEITIL U TEHTIUZ LW,
Flo, UTFTOEARN T 77 a v BT LI ENTE D,
" input: for declaring your data or reading them from files.

" model: for declaring your optimization model.

" param: for parameterizing the local-search solver before running.

MSI &4t Copyright © 2017. All Rights Reserved

display: for displaying some info in console or in some files during the
resolution.
finished.
4.2

output: for writing results in console or in some files, once the resolution is
Nz
Gy

LSP €7 /VOH T, HRHIZHEHTE S, &<IC
!

MTE, FERIEHIR. FERIE R RREEL L TR ATRETH 2,

HEICE, UToEERSH L, FFiT—RRESRENTW,

HEIBEE, HilRIStE ozt F
B AE S (sum. min, max. sin, cos. log. exp %)
FwFLESAF (not. and. or. xor)
BREE T (==, !=, <=, >= < >)
- EAEET Gf, array+at)
4.3 FibtRe
1) BHOER

// a=1
9;

ERDELDOYI 2R, UTIETXTHERTH S,
true;

// b =9

a + b;
c

// c =10
a*b; // c=09

a ==

C

a < b;

:// c=0
// c =1
2) BAIESR

LocalSolver ®EF1IE map

TERTDHIENTE D,
Map X, i & ¥ —Z2fEFFo o7 — Gl > T D, F—Id, BHTHY
—IZS S E LD, [7T77 v MERIEZHWD,
a = map(*'z", 9); // a[0] = "z

R B LRI T 2 MEIT R, HIE, EARIATTHLTHRETH Y,

£
a[1] = 9
MSI &4t Copyright © 2017. All Rights Reserved

a={"z", 9}; // a[0] = "z, a[l1] = 9

a["a'] = "abc"; // a[0] = "z, a[1] = 9, a["a'] = abc

3) RMHIE

W)

IR, if XEFEHT 5, R, AT
if (C) S_true; else S_false;
F770X, ? - CERICERT AL TE S,

if (1 <2)c=3; else c =4;
c=1<27?3: 4;

if (0) c = "ok";
if (true) c = "ok™";
if (2) c = "error'"™; // ERROR: invalid condition

c=0*9; // c=0

it (o {
a="L";
b = 0;
} else { // executed block
a = "S";
b =1;
¥

4) #oiEL

MUK LIZIE, while & for N 5,

While (%X, AT TRtk 3%, CHETHHERY ., SNFETIND,
do S; while (C);

for I, AR CRLib 3%, v VIZHAHRYD ., SHEITIND,
for [v in V] S;

Fo, F—LERE Y FOLGEITIE. LUFTRET 5,
for [k,v in M] S;

for [i in 0..2] a[i] =1 + 1; // a[0] = 1, a[1] = 2, a[2] = 3

10
MSI #X&# Copyright © 2017. All Rights Reserved

O; for [vinal] s=s +v; // s =6

]
1

0; for [k,v ina] s=s +k+vVv; // s =29

]
1

for[i in 0..9]
for [J in i+1..9]
for [k in j+2._9]
alilblk] = & + j + k;

for[i in O..9][J in i+1..9][k in j+2..9] // compact
alililikl = 1 + j + k;

for[i in 0..9][j in i+1..9][k in j+2..9]
{

i+j+k;
i*j*k;

alil10]1Lk]
bLi]1Li1Ck]

5) #0 iR U{HE
MR LEREIX, DA TRtk 9 5,
for [v in V] alv] = £(v);
LSP Tid, YT OEMEE TRk rlETH %,
alv in V] = £(v);

for[i in 0..9][j in i+1..9][k in j+2..9]
afil0idik]l = 1 + j + k;

a[i in 0..91[F in i+1..91[K in j+2..91 = i + j + k;

X[i in O0..n-1][jJ in 0..m-1] <- bool();.

6) B
LSP TlE, EEICEAKAER TE 5, FEOEIL, O (false) £721F 1 (true) TH
BWwL., #iETHLREUW, LSP 72 77 AldiiT . function B CHBADEHEF (global)
272> T A 72, function N T — AV L7-WEEEIZIX, local D BEEFTH
—HINEHTHL EEERTOILENRD D,

11
MSI &4t Copyright © 2017. All Rights Reserved

function iskEven(v) {
if (v % 2 == 0) return true;
else return false;

}

function computeSumOfEvenNumbers(a,b) {
local total = O;
for [v in a..b : iskEven(v)]
total = total + v;

return total;

4.4 FhxoT—RAvyt—v

Tl B T RSB S, 1sp 77 A VOZRTTY, b Llsp 7 7 A 4008 FiU
TEXRVRDIE, =F5—%H, F72. avwr R G40 OMOETOREL (35 A—4%)
I, 74—~ b identifier=value Z£i7- 727U’ e H720 N,

« <f> doesn't exist or is not accessible. // LSP file

+ Invalid argument format for <arg>. Expected format : identifier=value.

LSP |k L7-S75CTH Y . B/ ST A—ZUTIE LV VRIDWEETH 5,

+ Function <f> cannot handle argument of type <t>. Argument of type <t2> is expected.
« Function <f> takes <x> argument(s) but <y> were provided.
+ Function <f> : <T> expression expected for argument <i>.

FHRIZ, BT = v 7 TREEIZOG A, =T — X obe—U 52135,

+ Cannot apply <opName> operator on type <T>.

+ Cannot apply <opName> operator between types <T'1> and <T2>

+ Cannot cast <T1> to <T2>.

+ Cannot apply ternary operator '?"' on given operators : incorrect argument type.

+ Cannot cast 'nil' to <T>. A variable or a map element may not be assigned.

12
MSI #X&# Copyright © 2017. All Rights Reserved

WS ONDOBHTS AR, b L. SIEOEDNEDIRNGEIZE, =7 —&2 1195,

« Function <f> takes at least <x> argument(s) but <y> were provided.
« Function <f> takes at most <x> argument(s) but <y> were provided.

B AA DIy, BIEOIRER THIUTL, =7 —RX v b—C2 M35, Eio. BHFOR L [F
CARIOBEZERT 2D b T —Th D,

ZEATA LT, BHICHER (A FRECTHD, 722U, RFTABTZ L, (R CAHT]
TOEfES ZEIFTTERYY, b L, ZHOMEZFRT 2GR, nil OfEZFF,

+ Function <f> already defined.
+ Function <f> undefined.
« Variable <name> already defined.

Input/output %, FEESN-7 7 A VOB F = v 7 2479,

« File <f> cannot be opened.
+ Cannot read from file <f>.
+ Cannot write to file <f>.

BFEIBEFFN AT, T 07T DT —=205—BL7pu (T—28 Z A 7ER—E
L2V HEBIOT 7 A VDOREE CirA Tl aliIe 7 —4 /4%,

+ Cannot convert the current token to int.

+ Cannot convert the current token to double.
+ End of file: no more line to read from file <f>.
+ End of file reached.

SCFHNOEETIE, SEFFIDZETIRNZ L RO T 7 ADSFEEHRIPAN T 5 Z L HWLEET
B2,

+ The given index for substring is out of range. Min value: 0, Max value: <len>.
+ Number of characters for substring must be greater than 0.

+ Search string is empty.

13
MSI #X&# Copyright © 2017. All Rights Reserved

<7 ORIEE LT oH 5,
s s U2 =yl e Y A Vo Nl
A ZL— g o Gl U CIERER L QAR 13, vy FEAERE LTI B0

- 'nil' provided as key for a map. The key variable may not be assigned.
+ Only types 'string' and 'Int' are allowed for keys in maps.

- Cannot iterate on a modified map.

LSP 7 /UZxF L T/8T A—H THAHZETET DA T, FREIHOHAE TR U7 573
AN

+ The objective bound must be an integer, a double or a boolean for objective <objIndex>
« The objective bound must be an integer or a boolean for objective <objIndex>

+ The number of threads cannot exceed 1024.

+ The annealing level size must be an integer between 0 and 9.

+ Advanced parameter <key> does not exist.

ET NV CREINIEHAETIT H5A10E, < THSTDHMETHD, Jadsis: <%l
STHST DI &I,

ET U 6T BRIBED 72U b7awy, E72, BB CERET 2 0803 8 5,
~ TEHEATE RS,

AR, S T U FEBTRTIUTZR B720,

+ Cannot assign localsolver expressions to local variables.
+ At least one objective is required in the model.
+ Only boolean expressions can be constrained.

+ Only expressions with a value can be added in the objectives list.
setValue B0 L, EARREZIL (bool 280 (ZOHWIEE 5% 5 Z L3 TE D,

+ The only allowed values are O or 1.

x<-alyl DEAFHTIL, ~ v 7 & L TBanbE: LB — W= L 70D, £2, /8
Ua—b LT, F—0SAET, BlET—4% £7213 LS BELVETH D,

14
MSI #X&# Copyright © 2017. All Rights Reserved

+ All keys must be integers. Type found: <T>
+ Values must be integers, booleans or expressions. Type found: <T>

- The first key must be 0. Key found: <key>
+ Keys are not in a continuous range. Next key expected <key1>. Key found: <key2>.

PRRORNT, BHESSHRIET R LRWEE AT 5 2 SITEE S0,

B2 TEZUE, FATATRBIRREDRAZ, SHTARERATRRPITHE 57— A d D,
BrERADG A — =T n— N E R CH Y | FIROSRDN R 231 7 7 AD3EiH
INZIp T LB ENT D, z<xly DX IRLEAITIE. z<x/max(ly) L E£HT 5= EE
FLUY,

+ Division by zero.

+ Index out of bounds for 'at' operator (index: <indexId>, array size: <n>

UL

15
MSI #X&# Copyright © 2017. All Rights Reserved

(fF8% 1]

EET—E

Operator Description | Type Arity Symb
Boolean decision: decision variable with domain
Decisional bool bool 0
{0,1}.
sum Sum of all operands. double* n>0 +
prod Product of all operands. doublex* n>0 *
min Minimum of all operands. doublex* n>0
max Maximum of all operands. doublex* n>0
div Division of the first operand by the second one. | double* 2 /
Modulo: mod(a,b) = rsuch that a= gkb + rwith
mod int 2 %
g, rintegers and |4 < b.
abs Asolute value: abs(e) = eif e >= 0, —e otherwise. | double* 1
Arithmetic
dist Distance: dist(a,6) = abs(a-b). double* 2
sqrt Square root. double 1
cos Cosine. double 1
sin Sine. double 1
tan Tangent. double 1
log Natural logarithm. double 1
exp Exponential function. double 1
16

MSI &t Copyright © 2017. All Rights Reserved

Power: pow(a,b) is equal to the value of araised

pow double 2
to the power of b.
ceil Ceil: round to the smallest following integer. int 1
floor Floor: round to the largest previous integer. int 1
Round to the nearest integer: round(x) =
round int 1
floor(x+0.5).
not Not: not(e) =1 - e. bool 1 !
And: equal to 1 if all operands are 1, and O
and bool n>0 &&
otherwise.
Logical
Or: equal to O if all operands are 0, and 1
or bool n>0 I
otherwise.
Exclusive or: equal to 0 if the number of
xor bool n>0
operands with value 1 is even, and 1 otherwise.
eq Equal to: eq(ab) = 1 if a=b, and 0 otherwise. bool 2 ==
Not equal to: neq(a,h) =1 ifa'=b, and 0
neq bool 2 1=
otherwise.
Greater than or equal to: geq(a,h) = 1 if a >=b,
geq bool 2 >=
and 0 otherwise.
Relational
Lower than or equal to: leq(a,b) = 1 if a <= b, and
leq bool 2 <=
0 otherwise.
Strictly greater than : gt(a,h) =1ifa> b, and 0
st bool 2 >
otherwise.
Strictly lower than: It(a,6) = 1 if a < b, and 0
It bool 2 <
otherwise.
Ternary conditional operator: iif(a,b,c) = b if a is
if int* 3 ?:
equal to 1, and ¢ otherwise.
Conditional
Access to an array: 7L/ returns the th value in
at int 2 []
array 7.
17

MSI &t Copyright © 2017. All Rights Reserved

[(fHER2]FHEE—E

Modeling & Solving Parameter

. IsTimeLimit = {10, 50}; Spends 10 (resp. 50) sec to optimize objective 0 (resp. 1).

. IsTimeLimit = 60; Corresponds to IsTimeLimit = {0O,..., 0, 60}.

. IslterationLimit = {1000, 5000} ; Spends 1000 (resp. 5000) iterations to optimize
objective O (resp. 1).

. IslterationLimit =6000; Corresponds to IslterationLimit={0,..., ,6000}.

. IsTimeBetweenDisplays = 5; Displays info about the search every 5 sec (default: 1).
. IsSeed = 9; Sets pseudo-random number generator seed to 9 (default: 0).

. IsNbThreads = 4; Parallelizes the search over 4 threads (default: 2).

. IsAnnealinglLevel = 9; Sets simulated annealing level to 9 (no annealing: 0, default:1).

. IsVerbosity = 1; Sets verbosity to 1 (no display: 0, default: 1).

Functions
Input & Output Library
. T = openRead(*'data.in'); Opens file "data.in" in reading mode.
. T = openWrite('data.out'™); Opens file "data.out" in writing mode.

. T = openAppend(*'data.out'); Opens file "data.out" in append mode.
. close(T); Closes the file.

. eof(F) Returns true if the end of file is reached.

. i readInt(); Prompt the user for an int (in the console standard input).

. i = readlnt(f); Reads the next int parsed in file.

. i = readDouble(); Prompt the user for a floating-point number (in the console standard
input).

. i = readDouble(f); Reads the next floating-point number parsed in file.

= s = readIn(); Prompt the user for a line (in the console standard input).

. s = readIn(f); Reads the next line of file.

. s = readString(f); Reads the next string parsed in file.

. print("'s = " + s + "¥n"); Prints the string in console.

. print(f, s =" + s + "¥n"); Prints the string in file.

. printIn('s = " + s); Prints the string followed by a line feed in console.

. printIn(f, "s = " + s); Prints the string followed by a line feed in file.

. error(msg); Prints an error message and exits.

18
MSI #X&# Copyright © 2017. All Rights Reserved

Map Library

. m = map(); m = {}; Creates an empty map.
. m = map(9, "abc™); m = {1, "abc"}; Creates a map containing values 9, "abc" at

keys 0, 1 respectively.

. nbElems = count(m); Counts the number of values in the map.
. elems = values(m); Returns the values of the map as a map.
. indices = keys(m); Returns the keys of the map as a map.

. add(m, 123); Adds 123 in the map with key equals to the largest integer key plus one.
String Library

. i = tolnt(*'123"); Converts the string into the corresponding integer (or throws an error
if not possible).

. i = toDouble(’'123.45"); Converts the string into the corresponding floating-point
number(or throws an error if not possible).

. m=split(a::b::c::d", "::"); Splits string "a::b::c::d" into substrings (as a map)

according to the

separator "::".
. s=trim(" abcd ') ; Removes white spaces at the beginning and at the end of the
string.
. len = length('abcd™); Returns the length of a string.
. s = substring(*abcd™,1,2); Returns a new string that is a substring of this

string.There are two versions of this function: The first one takes two arguments : the string,
and the start index of the substring. The second one takes 3 arguments : the string, the start
index and the length of the substring.

. b = startsWith(abcd","ab'); Returns true if the first argument starts with the
specified prefix given as a second argument.If the second argument is the empty string,
returns true.

. b =endsWith('abcd™, " cd"); Returns true if the first argument ends with the specified

suffix given as a second argument.

. s = lowerCase("'ABCD™); Returns a new string converted to lower case.
. s = upperCase("abcd™); Returns a new string converted to upper case.
. s = replace('abcd","bc™,""x"") ; Replaces each substring of a string that matches

the literal target string with the specified literal replacement string. The replacement

19
MSI #X&# Copyright © 2017. All Rights Reserved

proceeds from the beginning of the string to the end, for example, replacing "aa" with "b" in
the string "aaaaa" will result in "bba" rather than "abb".This function takes 3

arguments :subject string, searched sequence and replace sequence.

Modeling & Solving Library

. getObjectiveBound (1) ; Gets the bound of objective (with index) 1.
. setObjectiveBound(1, 9999); Sets the bound of objective 1 to 9999.

. v = getValue(x) ; Gets the value of modeling expression x in the best solution found by
the solver.
. setValue(x, 1); Sets the value of x to 1 in the initial solution (or throws an error if X is

not a decision).

MSI #X&# Copyright © 2017. All Rights Reserved

20

[t5%3] S

Isp

Isp

Isp

ETFILE Isp | C++ Java Ctt B&
te te ke

toy 17 49 29 46 2.7 48 28 | FyTH VIR (MMETIL)
car_sequencing 771 211 27| 211 27| 246 32 | ElIRAIRSEE
knasack 44 [126 29| 128 29| 144 3.3 | Ty Ty
maxcut 44 [138 31| 137 31| 149 3.4 | HbEtERE
multiobj_knapsack 93 172 1.8 182 2.0 191 2.1 ;?jﬂ‘VOFuﬁE(SFﬁﬁéﬁﬁ

OR-LIB, 2 AfE D#IEIR Mz
pmedian 66 | 154 23| 154 23| 169 26 "
TR 1.0 2.6 2.6 29
socialgolfer 69 CSPLIB, problem 010
steel_mill_slab_design 99 CSPLIB, problem 038
google_machine 231 Google [E178 (Google AR H)
table_layout 243 RECERIE
nurse_rostering 505 BEMRAT 1))

MSI #&4 Copyright © 2017. All Rights Reserved

21

[fHek4] B 72 (Isp & FEITRE)

f16%4. 1 1sp705 5L (toy ETILIZEIE: output Z3B0)

/********** t0y2 Isp **********/

function model()
{

nbProducts = 8;

value = {1,10,15,40,60,90,100,15};
// 0-1 decisions

X[i in 0..nbProducts-1] <- bool();

Il weight constraint

knapsackWeight <- 10*x[0] + 60*x[1] + 30*x[2] + 40*x[3] + 30*x[4] + 20*x[5] +
20*x[6] + 2*X[7];

constraint knapsackWeight <= 102;

/I maximize value

knapsackValue <- 1*x[0] + 10*x[1] + 15*x[2] + 40*x[3] + 60*x[4] + 90*X[5] +
100*x[6] + 15*X[7];

maximize knapsackValue;

function output()

{

printin(" Selected Products:");
for [i in 0..nbProducts-1 : getValue(x[i]) == 1]
printin("#"+i+" ("+value[i]+")");

MSI #X&# Copyright © 2017. All Rights Reserved

22

1634. 2 1spEITHR (toy ETILIZEEE : output Z380)

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:¥Users¥Miyazaki-MSl>cd C:¥localsolver_7_0Owith64¥examples¥toy

C:¥localsolver_7_0with64¥examples¥toy>localsolver toy2.Isp IsTimeLimit=1
LocalSolver 7.0 (Win64, build 20170502)

Copyright (C) 2017 Innovation 24, Aix-Marseille University, CNRS.

All rights reserved. See LocalSolver Terms and Conditions for details.

Load toy2.1sp...

Run model...

Preprocess model 100% ...

Close model 100% ...

Run solver...

Initialize threads 100% ...

Push initial solutions 100% ...

Model:
expressions = 38, operands = 50
decisions = 8 (bool = 8, int = 0, float = 0, list = 0),
constraints = 1, objectives = 1, constants =11

Preprocessing transformed 11 expressions
Param:
time limit = 1 sec, no iteration limit

seed = 0, nb threads = 2, annealing level = 1

Objectives:

Obj 0: maximize, bound = 331

Phases:

Phase 0: time limit = 1 sec, no iteration limit, optimized objective = 0

MSI #X&# Copyright © 2017. All Rights Reserved

23

Phase 0:

[Osec, 0itr] : obj = 280
[1sec, 75777itr]:obj= 280
[1sec, 75777itr]:obj= 280

75777 iterations, 151597 moves performed in 1 seconds
Feasible solution: obj = 280

Run output...

Selected Products:

#2 (15)

#4 (60)

#5 (90)

#6 (100)

#7 (15)

C:¥localsolver_7_0Owith64¥examples¥toy>

MSI #X&# Copyright © 2017. All Rights Reserved

24

[+18%5] BNF Syntax (/\wHR-F97iEi%k)

BNF ORTIIRDEISLEHIRADEETHS,

<symbol> ::=

EiBD<symbolDIFE—NDEEETH D, £1=. <expression with symbols> [XEEE 5. F1=IFER
ZRIN=T1HIWN=T|ITRYoNT=EEFFITHY. £LD &code><symbol> 0)%?@&@6
LDERLTWND GH. EHARTHERASN RSN ERIFEES | LTI S 1125
BHRANEOLEDICEN-ESIENEREES 1IEFEN . VThOEHRE D LD

<expression with symbols>

IEMoTf-EE B LM IREES I EFEN D,

S R-1=]

=<>ZEEBLTHD,

LUTFIZLSP
<>

expression
> arithm_expression
| table _expression
| range_expression

arithm_expression

I primary_expression

lambda_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression

arithm_expression

arithm_expression

2 BNF Syntax %R, .

11" arithm_expression
arithm_expression
arithm_expression
arithm_expression
arithm_expression
nil*

"int*®

"double*

"<" arithm_expression

IiSI
IiSI

IiSI

">" arithm_expression
"<=" arithm_expression
">=" arithm_expression
"+" arithm_expression

arithm_expression

MSI #X&# Copyright © 2017. All Rights Reserved

http://ja.wikipedia.org/wiki/%E3%83%90%E3%83%BC%E3%83%86%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%90%E3%83%BC
http://ja.wikipedia.org/wiki/%E9%9D%9E%E7%B5%82%E7%AB%AF%E8%A8%98%E5%8F%B7
http://ja.wikipedia.org/wiki/%E7%B5%82%E7%AB%AF%E8%A8%98%E5%8F%B7
http://ja.wikipedia.org/wiki/%E9%9D%9E%E7%B5%82%E7%AB%AF%E8%A8%98%E5%8F%B7

arithm_expression "*" arithm_expression
arithm_expression "/" arithm_expression
arithm_expression "%" arithm_expression

I

I

I

| arithm_expression "?" arithm_expression ":° arithm_expression
| "+° arithm_expression

| "-" arithm_expression

| "!'" arithm_expression

I

"typeof" arithm_expression

primary_expression
: i1dentifier

"true”

"false*
"nan”
"inf"
nil*®

string

double

primary_expression "[" expression "]°"
primary_expression "." identifier
function_call

I
I
I
I
I
I
| integer
I
I
I
I
I

"(" expression ")*

lambda_expression
. identifier "=>" block statement
(" function_identifier_list ")" "=>" block statement
(" ")" "=>" block_statement

identifier "=>" arithm_expression

I
I
I
| " function_identifier_list ") "=>" arithm_expression
| "CC)" "=>" arithm_expression

| “function® " (" function_identifier_list ")" block statement
I

"function® (" ")" block statement

range_expression

> arithm_expression ".." arithm_expression

26
MSI #X&# Copyright © 2017. All Rights Reserved

table_expression
S &
| “{° table_list "}*

table_list
. expression
table _key "=" expression
table _key ":" expression

I

I

| table_list "," expression

| table_list "," table_key "=" expression
I

table _list "," table_key ":" expression

table key
: string
identifier

I
| integer
| "-° integer
function_call
> primary_expression (" ")*
| primary_expression "(" function_argument_list ")*
| primary_expression variadic_compositor_list " ("
function_argument_list ")~

function_argument_list
I expression

| function_argument_list *," expression

variadic_compositor_list
> [T filter_iterator "]"
| variadic_compositor_list "[* filter_iterator “]°

filter_iterator
: @Identifier "in" expression ":" expression

| identifier ", identifier "in" expression ":" expression

27
MSI #X&# Copyright © 2017. All Rights Reserved

in

=)
®
=)
=
=
D
=

expression

identifier "in”

E
®
>
=
=
D
=

expression

statement

> block_statement
assignment_statement
local _assignment_statement
local_statement
iT_else_statement
for_statement
while_statement
dowhile_statement
continue_statement
break statement
modifier_statement
throw_statement
trycatch_statement
function_call_statement

return_statement

block statement
: I{I I}I
| "{° statement_list "}"

statement list
: statement

| statement_list statement

assignment_statement
> 1dentifier assignment_operator expression -;*
| identifier assignment_compositor_list assignment_operator

expression ;-

assignment_operator

MSI #X&# Copyright © 2017. All Rights Reserved

28

g __w

|

|

|

| */="
|

I "%="
assignment_compositor_list

. assignment_compositor

| assignment_compositor_list assignment_compositor

assignment_compositor

- "[" Ffilter_iterator "]"
| "[° arithm_expression "]"
| "[° range_expression "]*°
I

." i1dentifier

local_assignment_statement
: "local” identifier local_assignment_operator expression ";*"
| "local® identifier assignment_compositor_list

local_assignment_operator expression °;*"

local_assignment_operator

I I<_l

local statement
- "local” identifier ";*

iT_else_statement
: "if" "(" expression ")*
| "1f" "(" expression ")" "else” statement

for_statement

: “for® for_compositor_list statement

29
MSI #X&# Copyright © 2017. All Rights Reserved

for_compositor_list
: for_compositor

| for_compositor_list for_compositor

for_compositor
> "[" filter_iterator "]°
| "[° range_expression "]*°

while_statement

> “"while® "(" expression ")" statement

dowhile_statement

: "do" statement “while® " (" expression ")*

continue_statement

- "continue® ";

break statement

. "break® *;

modifier_statement

: modifier expression ";*"

modifier
> "minimize*
| "maximize®
| “constraint”

throw_statement
: “"throw® expression -;*
| “throw® =;*

trycatch_statement

. "try® statement “catch® *(" identifier ")" statement

MSI #X&# Copyright © 2017. All Rights Reserved

function_call_statement

: function_call

return_statement

: "return® *;

| "return® expression *;

function_list
: function

| function_list function

function
: "function® identifier "(°
block statement
| “function® identifier “("

function_identifier_list
. 1dentifier

| function_identifier_list

use_section
I use_statement

| use_section use_statement

use_statement
- identifier ;"

start

: TOKEN_END
function_list TOKEN_END
use_section TOKEN_END

function_identifier_list *)"

") block statement

, i1dentifier

use_section function_list TOKEN END

MSI #X&# Copyright © 2017. All Rights Reserved

Ut

31

[{+§%6] LocalSolver $iégE

LocalSolver6.5 O Fit&REMEE: 2 LA N ICHET T 5,
f18% 6.1 Setting an initial solution
{18% 6.2 Infeasibility and inconsistency Analysis
f18% 6.3 At operator function
f1§% 6.4 Callbackfunctions
1% 6.5 Black-box Optimization
f18% 6.6 List variables
f18% 6.7 Function Operator (delegates)

f14% 6.8 Piecewise operator

MSI #&4 Copyright © 2017. All Rights Reserved

32

6.1 Setting an initial solution
LocalSolver does not need a starting solution to launch its algorithms.

However in some cases you may want to force LocalSolver to start from a specific
solution. For instance a planning system may consist in reoptimizing every morning the
current planning (inserting new tasks and taking into account updated deadlines). In

such a case passing an intial solution as input is natural.

Such an intialization will be achieved in LocalSolver by setting the value of decision
variables. For numeric decision variables (boolean, integers and floats) it is done with
the value attribute in the LSP modeler. For collection decision variable (lists) we use the

add and clear functions on this value:

function param() {
/l with x an int, y a float and z a list
x.value = 3;
y.value = 4.3;
z.value.clear();
z.value.add(2);
z.value.add(0);

Note that only decision variables can be initialized: setting the value of any other
expression will throw an exception. Besides, it is not necessary to set the values of all
decision variables. On the contrary in can make sense to set the values of some of the
decision variables, while relyling on LocalSolver to initialize other values. It is also
possible to intialize values to an infeasible solution, that is to say a solution violating
some of the constraints. In this case, LocalSolver will start from this infeasible solution
and quickly move to a feasible solution. The only requirement is that a decision variable
cannot be given a value outside of its domain. For instance an integer decision defined
as int(3,10) cannot be given value 15 and a list cannot be initialized to a collection with

duplicated values.

33
MSI #&4 Copyright © 2017. All Rights Reserved

In the APIs, the principle is the same.

Setting the value of a numeric expression is done with setIntValue or setValue for int
and boolean decisions or with setDoubleValue for float decisions. Lists are modified with

add and clear.

// With 1s a LocalSolver object

LSSolution sol = 1s.getSolution();

LSExpression intExpr = Is.getModel().getExpression("x");
LSExpression dblExpr = 1s.getModel().getExpression("y");
LSExpression listExpr = 1s.getModel().getExpression("z");

sol.setValue(intExpr, 1211);
intExpr.setValue(1211);

sol.setIntValue(intExpr, 1211);
intExpr.setIntValue(1211);

sol.setDoubleValue(dblExpr, 4.8);
dblExpr.setDoubleValue(4.8);

LSCollection col = listExpr.getCollectionValue();
col.clear();
col.add(2);
col.add(0);
col.add(3);

34
MSI #&4 Copyright © 2017. All Rights Reserved

6.2 Infeasibility and inconsistency Analysis

When submitting a model to LocalSolver (calling method solve), the expected result is to
obtain a feasible solution, and even sometimes an optimal solution. However in some
cases the returned solution can be infeasible in the sense that the current assignement
of values to variables violates some of the constraints of the problem. Two solution
status (see getSolutionStatus) are defined for these infeasibilty cases:

-infeasible means that no feasible solution was found to the submitted problem but it
could not be proven that no such solution exists. Maybe running a longer search would
have produced a feasible solution.

-Inconsistent means that the solver was able to prove that no feasible solution exists. In
this case, LocalSolver offers a functionality for analyzing the causes of this

inconsistency.

[1Note

Note that both status infeasible and inconsistent can also be encountered on problems
where no constraint was defined. Indeed some LocalSolver expressions induce an
implicit constraint on their operands. For instance sqrt(x) implicitly requires that x

takes a non-negative value.

Analyzing inconsistencies

Analyzing an inconsistent model amounts to identifying a relatively small inconsistent
subproblem. Such a subproblem or inconsistency core is said to be irreductible if it

contains no smaller inconsistent subproblem.

The function computelnconsistency computes such a core that is to say a set of
expressions (named causes) such that the problem restricted to these expressions and
their descendents is inconsistent. Calling this function requires the model to be closed
and the solver to be stopped. This inconsistency core is returned as an LSInconsistency
object. This object can be printed in a readable form so that the user can easily spot the

origin of the inconsistency. It also allows scanning the set of identified causes.

For example, the following model is inconsistent because limiting the cube of y to 250

prevents y from taking values larger than 6, what make the constraint 3*x + y >= 20

35
MSI #&4 Copyright © 2017. All Rights Reserved

impossible to satisfy:

function model() {
x <- bool();
y <- int(0,100);
z <- bool();
t <- int(0,100);
constraint 3*x +y >= 20;
constraint pow(y,3) <= 250;
constraint 4*z + t <= 18;

maximize x*t + 8*z*y;

The computation of the inconsistency core can be launched in the output function as

follows:

function output({
iis = computelnconsistency();

printIn(iis);

The resulting output on the standard console is the following:

Run output. .
Computing inconsistency core..
Inconsistency core found with 2 causes.
Irreductible inconsistency core found with 2 causes.
2 causes in inconsistency core:
pow(int (0, 100)#1, 3) <= 250
3 % boolQ#0 + int(0, 100)#1 >= 20

The two constraints responsible for the inconsistency are identified and displayed. Note
that expressions are identified by their type and index. It is also possible to assign

names to variables in the model function:

36
MSI #&4 Copyright © 2017. All Rights Reserved

ne
b

x.name ="x
y.name ="y";
z.name ="z";

t.name ="t";

Having defined these names the inconsistency core reads as follows:

2 causes in inconsistency core:
pow(y, 3) <= 250
3 * x + y > 20

['Note

In version 6.0, this functionality is offered in beta version: only explicit constraints are
considered as potential causes of the inconsistency unless a single non-constraint
expression is sufficient to cause the inconsistency. If the inconsistency core is empty it
can mean that the problem is consistent or that its inconsistency derives of the

combination of several implicit constraints.

37
MSI #&4 Copyright © 2017. All Rights Reserved

6.3 At operator function

The operator “at” is an operator whose first operand is an array or a list and whose
following operands are integers (the indices). The number of indices must match the
dimension of the array (1 in case of a list). Its value is the value of the element in the

array at the given indices.

[INote
This page covers the use of the “at” operator on arrays (mono-dimensional or
multi-dimensional). For a description of the use of the “at” operator on list variables, see

List variables.
The 1-dimensional at operator

Assume that we model the behavior of a machine whose status can be on (1) or off (0).
This status is modeled as a binary variable. Now the operating cost of this machine can

depend on its status what would be modeled straightforwardly in LocalSolver as:

status <- bool();

mcost <- status ? onCost : off Cost;

Note that onCost and offCost are not necessarily constants. They can depend on other
expressions, for instance we may have an optional special technology (say a binary
variable specialTechno) impacting the cost as follows: onCost <- 100 + 20 *

specialTechno.

The at operator can be seen as a generalization of this conditional expression (c ? a : b).
Let us generalize the above example to a machine having several possible operating
modes. Now the status is an integer variable whose value is among 10, 1, 2, 3, 4, 5}, and

the operating cost depends on the operating mode (the status).

Operating mode Operating cost

0 Cost 0

38
MSI #&4 Copyright © 2017. All Rights Reserved

Operating mode Operating cost

1 Cost 1
2 Cost 2
3 Cost 3
4 Cost 4
5 Cost 5
Here again costO, ... costb are not necessarily constants. They can depend on other

expressions or decisions. It would be possible to model the operating cost of this
machine with 5 nested conditional expressions but this approach would be tedious and
Iinappropriate in case of hundreds of operating modes. Instead the at operator allows us
to have all costs in an array and to define the operating cost by simply accessing this

array with the index status:

status <- int(0,5);

costs = {cost0, costl, cost2, cost3, cost4, cost5};

// In LSP the at operator is naturally written with the [l notation on a map

mcost <- costs[status];

In the APIs, the behavior is the same but requires a supplementary step. Indeed,
although the LSP language enables you to directly use arrays, maps or lists, no such
thing is possible for other languages and your array must be converted to an
LSExpression before use. This LSExpression is an operator of type O_Array. It has no
numeric value (calling getValue on it is forbidden) but contains an array of expressions

instead. Expressions in the array can be constant or not.

To convert a C++ structure to a LocalSolver array, you can simply create an
LSExpression with createExpression() then add each element manually as operands, or

use the provided shortcut that takes iterators pointing to the beginning and the end of

39
MSI #&4 Copyright © 2017. All Rights Reserved

your structure.

LSExpression status = model.intVar(0, 5);

std::vector<int> vv { cost0, costl, cost2, cost3, cost4, cost5 };
/I Convert the vector to LSExpression.

LSExpression Isv = model.array(vv.begin(), vv.end();

/Il Creates the at (operator [] is overloaded in the C++ API).

LSExpression mcost = Isv[status];

MSI #&4 Copyright © 2017. All Rights Reserved

40

The multi-dimensional at operator

The at operator also provides a way to access arrays of arrays. It can be really

convenient to avoid creating quadratic expressions.

Assume that we model a TSP where the ith city visited is stored in the expression citylil
and where the distance between each pair of cities is determined by the distance matrix
distance. The distance travelled from the ith city to the next one can be simply defined

by an at operator on the distance matrix with indices citylil and city[i+1]:

city = {exprCity0, exprCityl, ..., exprCityn};
distance = {{d00, d01, ..., dOn}, {d10, d11, ...,d1n}, ..., {dn0, dnl, ..., dnn}};

// In LSP, even the multi-index at operator is naturally written
// with the [][] notation on a map
distanceTravelled <- distancelcitylill[city[i+1]];

As is the case with the 1-dimensional at, the APIs’ equivalent of the above code also

requires creating an O_Array expression, but this time it will be an array of arrays.

std::vector<LSExpression> city {exprCity0, exprCityl, ..., exprCityn};
std::vector<std::vector<int> > distance =
{{d00, d01, ..., dOn}, 1d10, d11, ...,d1n}, .., {dn0, dn1, ..., dnn}};
LSExpression distanceArray = model.array();
for(int k = 0; k < n; k++)
distanceArray.addOperand(model.array(distance[k].begin(), distance[k].end());
LSExpression distanceTravelled = model.at(distanceArray, citylil, city[i+1]);

Jagged arrays
Arrays of arrays don’t have to represent square matrices. They can perfectly store

jagged arrays.:

41
MSI #&4 Copyright © 2017. All Rights Reserved

a=1{1,2,3}
b=1{4,5}
c=161};

myArray <- {a, b, c};

Pitfalls

Arrays must have a uniform dimension

It is not required that arrays have the same number of elements (jagged arrays), but
they must have the same dimension. Thus, it is not possible to mix, in the same

expression, a 2-dimensional array, with a 3-dimensional array.

// Will throw an error because the first operand is an expression of

/I dimension 0 (a boolean decision) whereas the second is an array of
// dimension 1

std::vector<int>a {1, 2, 3 };

LSExpression array = model.array(a.begin(), a.end());

LSExpression error = model.array();
error.addOperand(model.bool());

error.addOperand(array);

Indices start at zero

The indexing of the array starts at 0. Hence when creating an at expression in the LSP
language, the map must have a value defined for index 0.

For example, the following code will throw an exception:

status <- int(1,3);
costs[1] = 10;
cost[2] = 18.2;
cost[3] = 20;

// will throw an exception because indices of map "costs" do not start at zero

42
MSI #&4 Copyright © 2017. All Rights Reserved

mcost <- costs[status];
Indeed when creating such a expression through a map, an O_Array expression is
implicitly created, hence indices in the map must be consecutive and starting at 0, as in

a regular array.

Implicit constraints are induced by the use of at operators

When the indices of an at expression take values outside of the bounds of the array, this
expression is considered as violated and the LocalSolver solution has the “Infeasible”

status (or “Inconsistent” if the solver can prove that no feasible solution exists).

For instance the following code has no explicit constraint but the model will be proven

inconsistent because of the implicit constraints induced by the “at” operator:

x <- int(-3, 3);
cliin 0..30] <- 3*1 + 1;

minimize c[-3 + 2*x] + ¢[3 - 2*x];

In the APIs, an operator of type O_Array must be created

Altough the LSP language allows creating array expressions from maps, API functions

require the explicit creation of an O_Array expression. See the C++ code below.

std::vector<int> vv { 10, 18, 20 };
LSExpression x = model.intVar(0, 2);

// Will not compile because vv is not an LSExpression

LSExpression wwx_bad = vv[x];

/I OK since lsv is an LSExpression of type O_Array
LSExpression lsv = model.array(vv.begin(), vv.end();

LSExpression wwx_good = lsv[x];

43
MSI #&4 Copyright © 2017. All Rights Reserved

6.4 Callback functions

LocalSolver allows you to react to specific events during the search by calling your own
functions/procedures. It can be used for example to control when to stop the search or to

display some specific information during the search.

[1Note
This functionality requires using LocalSolver through its APlIs, it is not available in the

LSP language.

When adding a callback function to LocalSolver (with the addCallback() function) you
can specify to which event your function must react, thanks to the LSCallbackType
enumeration:

-PhaseEnded: your function will be called at the end of each search phase.
-PhaseStarted: your function will be called at the beginning of each search phase.
-Display: your function will be called periodically, after a display on the console or in the
log file, every timeBetweenDisplays seconds.

-TimeTicked: your function will be called periodically, every timeBetweenTicks seconds.
-IterationTicked: your function will be called periodically, every iterationBetweenTicks

1terations.

The same callback can be wused for different events. The parameters
timeBetweenDisplays, timeBetweenTicks and iterationBetweenTicks can be modified in
the LSParam object.

When a callback is called, the solver is paused. In that state, you can call all the
methods of the API marked as “allowed in state Paused”. For example, you can :

-Stop the resolution.

-Retrieve the current solution.

-Retrieve the statistics of the search.

In this section, we detail how callback functions are introduced in each programming
language (Python, C++, Java, .NET). To illustrate this description we will use a simple
example where a callback function allows to stop the search when no improvement of
the objective function is found during a period of 5 seconds (the solved problem is a

random knapsack).

44
MSI #&4 Copyright © 2017. All Rights Reserved

In C++, a callback function is passed to LocalSolver as on object extending the
localsolver::LLSCallback class. This «class has a single virtual method
localsolver::LSCallback::callback() taking two parameters: the LocalSolver object that
triggers the event and the type of the callback. It is possible to use the same callback

object for multiple events or multiple LocalSolver instances.

Here we create a small class MyCallback containing two fields lastBestValue and
lastBestRunningTime. The callback method uses these two fields with the statistics of
LocalSolver to decide to stop or to continue the search. The callback is registered with
the method localsolver::LocalSolver::addCallback():

class MyCallback : public LSCallback {
private:
int lastBestRunningTime;
Isint lastBestValue;
public:
MyCallback(1
lastBestRunningTime = 0;

lastBestValue = 0;

void callback(LocalSolver& solver, LSCallbackType type) {
LSStatistics stats = Is.getStatistics();
LSExpression obj = 1s.getModel().getObjective(0);

if(obj.getValue() > lastBestValue) {
lastBestRunningTime = stats.getRunningTime();

lastBestValue = obj.getValue();

if(stats.getRunningTime() - lastBestRunningTime > 5) {
cout << ">>>>>>> No improvement during 5 seconds: resolution is

stopped" << endl;

1s.stop0);
}else {
cout << ">>>>>> Objective improved by " << (obj.getValue()

45
MSI #&4 Copyright © 2017. All Rights Reserved

lastBestValue) << endl;

}

LocalSolver Is;
MyCallback cb;
ls.addCallback(CT TimeTicked, &cb);

Each time this callback will be invoked by LocalSolver (namely every timeBetweenTicks
seconds) it retrieves the statistics of the search and consider the total running time and
the current best value of the objective function. If no improvement has been found

during 5 consecutive seconds, it calls the stop() function to stop the search.

46
MSI #&4 Copyright © 2017. All Rights Reserved

6.5 Black-Box Optimization
Black-Box Optimization

LocalSolver allows you to optimize function through a costly black-box interface. The
solver is only able to evaluate the value of the function at a given point. This type of
problems appears in practice when you need to simulate a physical process using an

external library or simply when the mathematical description of the objective function

1s too complex to model.

Note
Note that this functionality requires using LocalSolver through its

LocalSolverBlackBox APIs, it is not available in the LSP language.

In this section we detail how to optimize a black-box function in each programming
language (C++, Java, .NET, Python). To illustrate this description we will minimize the
branin function through a black-box interface. The number of evaluations will be
limited to 20.

Branin function is defined by f(x) = a(x2 - b*x12 + ¢*x1 - r)* + s(1-t)cos(x1) + s with a=1,

b=>5.1/(41%), c=5/m1, s=10 and t=1/(8m). The domains of x1 and x2 are respectively [-5,10]
and [0,15].

e —_——

For more details, see : branin.html

47
MSI &t Copyright © 2017. All Rights Reserved

http://www.localsolver.com/documentation/advancedfeatures/blackbox.html#black-box-optimization
http://www.sfu.ca/%7Essurjano/branin.html

Black-Box optimization in C++q

In C++, a black-box function is passed to LocalSolverBlackBox as an object extending
the LSBBNativeFunction class. This class has a single virtual method call taking as
parameter a LSBBNativeContext object. The 'call™ method uses this context to access
the decision values of the current point to evaluate and returns the value of the function
at this point:

#include <iostream>

#include "api/blackbox/localsolverblackbox.h"

using namespace localsolverblackbox;

#define PI 3.14159

class Branin : public LSBBNativeFunction {
virtual 1sdouble call(const LSBBNativeContext& context){
Isdouble x = context.getDoubleValue(0);
Isdouble y = context.getDoubleValue(1);
return pow(y - (5.1/(4.0* PI*PI)) *x*x+ 5.0/ Pl *x -6, 2)
+10*(1-1/(8.0* PD) * cos(x) + 10;

IR

A LocalSolverBlackBox model is then created to optimize this black-box function. The
black-box function 1is transformed into a LSBBExpression object using the
createNativeFunction method. The decisions are associated to the function using a
LSBBExpression object of type O_Call. The model is then parametrize to use 20
evaluations of the black-box function. The solution value can be obtained after the
resolution using a LSBBSolution object:

int main({

Branin braninFunction;

LocalSolverBlackBox 1s;
LSBBModel model = Is.getModel();

LSBBExpression x = model.floatVar(-5,10);

48
MSI #&4 Copyright © 2017. All Rights Reserved

http://www.localsolver.com/documentation/advancedfeatures/blackbox.html#black-box-optimization-in-c

LSBBExpression y = model.floatVar(0,15);
LSBBExpression f = model.createNativeFunction(&braninFunction);
LSBBExpression call = model.call();

call.addOperand(f);

call.addOperand(x);

call.addOperand(y);

model.addObjective(call, OD_Minimize);

model.close();

Is.getParam().setEvaluationLimit(20);

Is.solve();

LSBBSolution sol = 1s.getSolution();

std::cout << "x=" << sol.getDoubleValue(x) << std::endl;
std::cout << "y=" << sol.getDoubleValue(y) << std::endl;
std::cout << "obj: " << sol.getDoubleValue(call) << std::endl;

MSI #&4 Copyright © 2017. All Rights Reserved

49

Black-Box optimization in Javaf

In Java, a black-box function is passed to LocalSolverBlackBox as an object
implementing the LSBBNativeFunction interface. This interface has a single method
call taking as parameter a LSBBNativeContext object. The call method uses this
context to access the decision values of the current point to evaluate and returns the
value of the function at this point.

A LocalSolverBlackBox model is then created to optimize this black-box function. The
black-box function is transformed into a LSBBExpression object using the
createNativeFunction method. The decisions are associated to the function using a
LSBBExpression object of type Call. The model is then parametrize to use 20
evaluations of the black-box function. The solution value can be obtained after the
resolution using a LSBBSolution object:

import localsolverblackbox.*;

public class Branin{

public static void main(String [] args) {

LocalSolverBlackBox Is = new LocalSolverBlackBox();
LSBBModel model = 1s.getModel(;
LSBBExpression f = model.createNativeFunction(new LSBBNativeFunction({
public double call(LSBBNativeContext context)t
double x = context.getDoubleValue(0);
double y = context.getDoubleValue(1);
return Math.pow(y - (5.1 /(4.0 * Math.PI * Math.PI)) * x * x
+ 5.0/ Math.PI *x - 6, 2)
+10 * (1 - 1/(8.0 * Math.PI)) * Math.cos(x) + 10;
H
1

LSBBExpression x = model.floatVar(-5,10);
LSBBExpression y = model.floatVar(0,15);
LSBBExpression call = model.call(;
call.addOperand(f);

call.addOperand(x);

50
MSI #&4 Copyright © 2017. All Rights Reserved

http://www.localsolver.com/documentation/advancedfeatures/blackbox.html#black-box-optimization-in-java

call.addOperand(y);

model.addObjective(call, LSBBObjectiveDirection.Minimize);
model.close();

ls.getParam().setEvaluationLimit(20);

Is.solve();

LSBBSolution solution = 1s.getSolution();
System.out.println("x=" + solution.getDoubleValue(x));
System.out.println("y=" + solution.getDoubleValue(y));
System.out.printIn("obj:" + solution.getDoubleValue(call));

MSI #&4 Copyright © 2017. All Rights Reserved

51

Black-Box optimization in .NETq

In .NET, a black-box function is passed to LocalSolverBlackBox as a delegate method
taking as a single parameter a LSBBNativeContext object. The method uses this
context to access the decision values of the current point to evaluate and returns the
value of the function at this point. In the example we use a static method:
public static double BraninEval(LSBBNativeContext context) {

double x = context.GetDoubleValue(0);

double y = context.GetDoubleValue(1);

return Math.Pow(y - (5.1 /(4.0 * Math.PI * Math.PI)) * x * x
+ 5.0/ Math.PI*x -6, 2)
+10*(1-1/(8.0 * Math.PI)) * Math.Cos(x) + 10;

}
A LocalSolverBlackBox model is then created to optimize this black-box function. The
black-box function is transformed into a LSBBExpression object using the
CreateNativeFunction method. The decisions are associated to the function using a
LSBBExpression object of type Call. The model is then parametrize to use 20
evaluations of the black-box function. The solution value can be obtained after the
resolution using a LSBBSolution object:
public static void Main(string[] args)
{

LocalSolverBlackBox Is = new LocalSolverBlackBox();

LSBBModel model = 1s.GetModel();

LSBBExpression x = model.Float(-5,10);

LSBBExpression y = model.Float(0,15);

LSBBExpression f = model.CreateNativeFunction(BraninEval);

LSBBExpression call = model.Call();

call. AddOperand(f);

call. AddOperand(x);

call. AddOperand(y);

model.AddObjective(call, LSBBObjectiveDirection.Minimize);

model.Close();

ls.GetParam().SetEvaluationLimit(20);

1s.Solve();

52
MSI #&4 Copyright © 2017. All Rights Reserved

http://www.localsolver.com/documentation/advancedfeatures/blackbox.html#black-box-optimization-in-net

LSBBSolution sol = 1s.GetSolution();
Console.WriteLine("x="+so0l.GetDoubleValue(x));
Console.WriteLine("y="+sol.GetDoubleValue(y));
Console.WriteLine("obj:"+sol.GetDoubleValue(call));

MSI #&4 Copyright © 2017. All Rights Reserved

53

Black-Box optimization in Pythonq

In Python, a black-function is simply a function or a method passed to
LocalSolverBlackBox. This method only have a single parameter of type
LSBBNativeContext object. The method uses this context to access the decision values
of the current point to evaluate and returns the value of the function at this point:
def branin_eval(context):
x = context.get(0)
y = context.get(1)
return math.pow(y - (5.1 /(4.0 * math.pi * math.pi) * x * x
+5.0 / math.pi *x - 6, 2)
+10* (1 -1/(8.0 * math.pi)) * math.cos(x) + 10
A LocalSolverBlackBox model is then created to optimize this black-box function. The
black-box function 1is transformed into a LSBBExpression object using the
create_native_function method. The decisions are associated to the function using a
LSBBExpression object of type CALL. The model is then parametrize to use 20
evaluations of the black-box function. The solution value can be obtained after the
resolution using a LSBBSolution object:
with localsolverblackbox.LocalSolverBlackBox(as Is:
model = Is.get_model()
x = model.float(-5,10)
y = model.float(0,15)
f = model.create_native_function(branin_eval)
call = model.call()
call.add_operand(f)
call.add_operand(x)
call.add_operand(y)
model.add_objective(call, localsolverblackbox.LSBBObjectiveDirection. MINIMIZE)
model.close()
ls.get_param().set_evaluation_limit(20)
Is.solve()
sol =1s.get_solution()
print "x=" + str(sol.get_value(x))
print "y=" + str(sol.get_value(y))
print "obj:" + str(sol.get_value(call))

54
MSI #&4 Copyright © 2017. All Rights Reserved

http://www.localsolver.com/documentation/advancedfeatures/blackbox.html#black-box-optimization-in-python

6.6 List variables

In addition to boolean, integers and floats, LocalSolver offers a higher level decision variable: lists.

The list operator

The list operator allows defining a decision variable whose value is a collection of integers within a
range [0, n-1] where n is the unique operand of this operator. Mathematically a list is a
permutation of a subset of [0, n-11]: it does not necessarily contains all the values in [@, n-1] and
all values in a list will be pairwise different, non negative and strictly smaller that n. Note that the

unique operand of this operator must be a constant strictly positive integer.

For instance the following line creates a list decision variable of range 10:

X <- list(10);

The value of this list is obtained with the syntax x.value in the LSP language, and with the method
getCollectionValue() in LocalSolver’s APIs. It returns an object of type LSCollection, that

can be read and modified through the methods: count, get, clear, add.

Modifying this LSCollection object modifies the value of the corresponding list variable. The

code below illustrates the use of these methods:

printIn(x.value.count()); // Current size of the list
x.value.clear(); // empty the list

X.value.add(3); // add a value, throw an error if this value in not in
interval [0,9], if x was defined as list(10)

x.value.add(5); // add a value, throw an error 1T this value is already

included in the list
for[e in x.value] printin(e); // print the content of the list

printIn(x.value); // print the content of the list, ~"[3, 5] " in this
case

55
MSI #&4 Copyright © 2017. All Rights Reserved

Operators on lists
Unary and binary operators

The count operator returns the number of elements in a list. For example, the following model

merely expresses the search for a list of maximum size:

x <- list(5);
maximize count(x);

The at operator allows accessing the value at a given position in the list. It takes two operands: a list
and an integer expression (not necessarily constant). It returns -1 when the given index is negative or

larger or equal to count(x).

For example, the objective function in the following model is to maximize the product of the first

and last items in the list:

x <- list(5);
constraint count(x) > 0O;
maximize x[0] * x[count(x)-1];

The indexOf operator returns the position of a given integer in the list or -1 if this integer is not
included in the list. It takes two operands: a list and an integer expression (not necessarily constant).
For example, given a matrix c of size n, the linear ordering problem consists in finding a permutation
of [0..n-1] of minimum cost, where a cost c[i][j] is paid when j is before i in the ordering. Here is the

corresponding model:

x <- list(n);
constraint count(x) == n;

minimize sum[i in O..n-1][J in O..n-1](c[ilJ] * (indexOf(x,1) >
index0f(x,j)));

N-ary operators

56
MSI #&4 Copyright © 2017. All Rights Reserved

The disjoint operator applies to N lists sharing the same range. It takes value 1 when all lists are
pairwise disjoint (that is to say that no value appears in more than one list), and value 0 otherwise. It
takes at least one operand. In the following example we try to maximize the minimum size among

three lists. Since they are constrained to be disjoint this maximum will be 3:

x <- list(10);

y <- list(10);

z <- list(10);

constraint disjoint(x, vy, z);

maximize min(count(x), count(y), count(z));

The partition operator applies to N lists sharing the same range. It takes value 1 when the given
lists form a partition of the set [0, n-1]. In other words, partition(xlists) is equivalent to
disjoint(xlists) & & sum[i in @..count(xlists)-1](count(xlists[i]) == n. It takes

at least one operand.

These operators are particularly useful when tasks have to be dispatched to different machines, or

locations have to be dispatched to different trucks for instance.

Application to routing problems

In the context of routing problems, list variables can be used to model a variety of problems. A pure
Traveling Salesman Problem (TSP) is modeled with a single list x with a constraint count(x)==
in order to specify that all cities must be visited. This constraint would be omitted for a Prize

Collecting TSP, where a penalty is paid for cities not in the tour.

A vehicle routing problem (VRP) will be modeled with K lists if k is the number of trucks. For a
classical VRP these lists will be constrained to form a partition (operator partition), whereas for a

Prize-Collecting VRP only their disjointness will be required (operator disjoint).

Distances can be either given as a matrix and accessed with the at operator or explicitly computed

(with operators pow and srqt for Euclidian distances for instance).

Detailed routing examples are available in our example tour.

57
MSI #&4 Copyright © 2017. All Rights Reserved

6.7 Function operator(delegates)

LocalSolver offers the possibility to apply n-ary operators (like sum, min, max and so on) to a range
of dynamic size. For instance it allows defining a sum whose number of terms will depend on other
expressions. In such an expression, the iterated term is introduced as a function. A typical usage is

for defining a sum over items of a list:

// with x a list
total <- sum(O..count(x)-1, i => quantity[x[i]lD):

In the above example, sum has two operands:

The first operand is a range of integers defined by its extremities.
The second operand is a lambda expression defining the function that should be applied to

each element in the range.
Both operands are LS expressions.

We will describe the properties of a range and how a function can be introduced. Then we will detail
which operators can benefit from this feature, including the special case of the array operator.

Several examples of our our example tour illustrate this feature (including the classical CVRP).
Ranges

A range is an collection of consecutive integers.

Warning

In the LSP modeling language, the .. operator defines a closed range that is to say that both
extremities are included in the interval: a..b refers to the sequence of integers from a to b. On the
contrary, when calling LocalSolver from its APIs, range(a,b) refers to the sequence of integers from
atob-1.

Both extremities of the range can be non-constant expressions. Note that some n-ary operators (like
min and max) will be considered as undefined when the range is empty, that is to say that the
solution will remain infeasible while the range is empty. For instance, the following expression

implicitly constrains b to be larger or equal to a:

58
MSI #&4 Copyright © 2017. All Rights Reserved

minimize max(a..b, 1 = v[i+l] * 2);

Functions

A function is a particular LocalSolver expression composed of two parts, arguments => body:

The arguments of the function, which are also LS expressions, automatically and implicitely created

when you use the arguments => body construct.

The body of the function. The body is an LS expression that will be used to evaluate the result of the
function. The body can be any LS expression composed of any operands and operators supported by
LocalSolver.

Note that these functions are explicitly defined with a combination of LocalSolver operators and

should not be confused with Native functions.

Applying a function to a range

Applying a function to a range is achieved with the syntax op(range,function) where:

op is some n-ary operator among: sum, prod, min, max, and, or, xor, array.
range is a range of integers
function is a function with exactly one argument, except for the array operator which

accepts one or two operands (see below).

The value of such a op(range,function) expression can be computed as follows. For each
integer i within range, function(i) is evaluated; and all these numbers are agregated with the
operator op. If we define v <- sum(a..b, i => f(i)), then v will be equal to the sum of all £(1i)

for i ininterval [a,b].

A typical usage of this feature can be found in our TSP example, where the sum of distances along

the circuit is computed as follows:

obj <- sum(0..nbCities-2, i => distanceWeight[cities[i]][cities[i+1]]D)
+ distanceWeight[cities[nbCities-1]][cities[0]];

Special case

59
MSI #&4 Copyright © 2017. All Rights Reserved

When the array operator is used in this context, it creates an array whose size will vary with the
size of the associated range. We allow a recursive definition of elements of this array by using a
second argument in the function, containing the evaluation of the function on the previous element

of the range.

Formally, if we definev <- array(a..b, (i,prev) => f(i,prev)),wewill havev[i] =

f(i,v[i-1]) forall iininterval [a,b], with v[-1] equal to O by convention.

The use of this feature can be illustrated on a routing problem with time-windows. Having opening
hours on each location visited by a truck, we have to take into account the possible waiting time of
the truck in case or early arrival. In fact the resulting time will be the maximum between the earliest
arrival time (based on the driving time from the previous location) and the opening hour. Taking into

account a service time on each location we have:

function departureTime(route, i, prev) {
arrivalTime <- (i==0) ?
openingHour[route[i]] :
max(openingHour[route[i]], prev +
distance(route[i-1],route[i]));
return arrivalTime + serviceTime[route[i]];

}

And the array of all departure times can be defined recursively as:

times <- array (0. .count(route)-1, (i, prev) => departureTime(route, 1,
prev));

Althoug we have used a function of the modeling language to obtain a more readable model it is
important to note that departureTime merely returns an expression made of LocalSolver

operators.

Now what if we also have closing hours at each location that is to say that the truck must have left
location L before closingHour[L]? Such a constraint can be added applying operator and to the

same range:

constraint and(0..count(route)-1, i => times[i] <= closingHou

60
MSI #X&# Copyright © 2017. All Rights Reserved

6.8 Piecewise operator

Piecewise |inear function are introduced in LocalSolver with the piecewise operator.
A piecewise linear function is a function composed of straight—line sections. The
extremities of each straight—Iline are called breaking points. We define a piecewise

function by giving all its breaking points in left to right order.

The piecewise operator takes exactly 3 arguments:

‘“r L. ‘r L

A non-decreasing array of n constant numbers, with n >=2

A array of n’ ' constant numbers

An integer or double expression

The solution will be infeasible if the value of the third operand is strictly smaller
that the first element of the first array, or strictly larger than the last element

of the first array. This operator returns a floating number.

The expression piecewise(X,y, z) returns the image of z by the function defined by
geometric points (x[0], y[0]), (x[11, y[11), (x[n-1], y[n-11). For instance
piecewise ({0, 50, 100}, {0, 10, 100}, 75) returns 55.

The figure below illustrates the curve defined by y <-

piecewise ({0, 10, 15,48.2}, {1,2,-0.5,3.15}, x). Note that this expression implicitly
set constraints x >= 0 and x <= 48. 2.

y <- piecewise({0,10,15,48.2},{1,2,-0.5,3.15}, x)

4
(48.2, 3.15)
3 A
///
///
/
{10,2) /,//
2 et -
,/’/ I.'\. e
7 ‘\ 7
/// "'.\ /
~ Y /
1 (0,1) \ e
///
g
//
o 10 \ 20 30 40 50
(15,-0.5)

61
MSI &t Copyright © 2017. All Rights Reserved

Discontinuities are allowed in the definition of the function, that is to say that
two geometric points can share the same x—coordinate. By convention the value taken
by the function at such a discontinuous point is the one associated to the last

occurrence of this x—coordinate in array.

For instance piecewise({0, 50, 50, 100}, {0, 0.1, 0.9, 1}, 50) returns 0.9.

The figure below illustrates the curve defined by y <- piecewise ({0 ,10,10,30,30,
48.2}, {1, 1, 2, 2, 3.15, 3.15}, x). This stepwise shape is often useful but any

other discontinuous |inear functions are allowed.

62
MSI #X&# Copyright © 2017. All Rights Reserved

	Modeling & Solving Parameter
	Functions
	Input & Output Library
	Map Library
	String Library
	Modeling & Solving Library

	Operators on lists
	Unary and binary operators
	N-ary operators

	Ranges
	Functions
	Applying a function to a range
	Special case

	6.8 Piecewise operator

