How to migrate from MIP to LSP ?

Since LocalSolver offers operators sum, product and arithmetic comparisons,
any integer program can be directly written in the LocalSolver modeling
language, provided that integer variables are rewritten as a weighted sum of
binary variables. However, such a model is often not suited for local search and
a set of simple operations should be performed on your model in order to reach
the highest performance.

Let us consider the car sequencing problem detailed in our step by step
example. Here is the standard integer program for this problem, written in
LocalSolver syntax, assuming that all variables have been defined beforehand:

MIP /5 LSP ~D#1TH &

LocalSolver IKEBEFDEE. FB. BLUEMDLEFIRETLIDT, BHE
HE2ELZHOMERME LTETEINDS A LIL, LocalSolver ETY VI E
BTEEECZIENTEET, LKL, ZOESBETIVIE, O—HIILERKIC
TFELTWHEWIENEL, REDNTA—IVREERT B=HIZ. ETIL
[Cxf L CRIBRGIREEEZETTOLELNHY FET,

I=EDRATYT THMICHRBASN TLWAINZDIEFREEH IZZEFTHELLS,
FTRTDEHNHOMNEDEESNTULNSEREL. LocalSolver X TEM =
DEBEDOEEBRY IO S LERITRLET,

// A MIP-like MODEL FOR THE CAR SEQUENCING PROBLEM
for[c in 1.._nbClasses]
constraint sum[p in 1._nbPositions](cp[c][p]) == card[c];
for[p in 1._nbPositions]
constraint sum[c in 1..nbClasses](cplcllp]) == 1;
for[o in 1.._.nbOptions][p in 1..nbPositions]
constraint op[o][p] >= sum[c in 1..nbClasses :
options[c][oll(cplcllprl);
for[o in 1.._.nbOptions][j in 1._nbPositions-Q[o]+1]
constraint nbVehicles[o][J] == sum[k in 1.._.Q[o]](op[o]li+k-11);
for[o in 1.._.nbOptions][j in 1..nbPositions-Q[o]+1] {

http://www.localsolver.com/documentation/quickstart/solvingyourfirstbusinessproblem.html
http://www.localsolver.com/documentation/quickstart/solvingyourfirstbusinessproblem.html

constraint violations[o][j] >= nbVehicles[o][]J] -P[o]l;
constraint violations[o][j] >= O;

}

constraint obj == sum[o in 1.._.nbOptions][p in 1._nbPositions-
Q[o]+1](violations[o]l[pD):

minimize obj;

Decision variables and intermediate expressions

As explained in our modeling principles, the most crucial modeling decision is
the choice of the set of decision variables. Here, the set of cp[c][p] is a good
set of decision variables since the values of all other variables can be inferred
from the values of cp[c][p]. Now intermediate variables can be written as such.
For instance the constraint nbvehicles[o][j] == sum[k in
1..Q[o]](op[0][j+k-1]) can be turned into an expression defining the term
nbVehicles[o][j] <- sum[k in 1..Q[o]](op[o][]j+k-11).

Using non-linear operators instead of

linearizations

Now we can observe that some equations in this model are in fact linearizations
of arithmetic or logic expressions. For instance the constraint op[o][p] >=
sum[c in 1..nbClasses : options[c][o]](cp[c][p]) merely states that
op[o][p] is equal to 1 as soon as one of the given terms is equal to 1 what is
more naturally expressed as a or: op[o][p] <- or[c in 1..nbClasses :

options[c][o]](cp[c][p])

Finally the pair of constraints on violations[o][j] are just the linear fashion of
defining the maximum of a certain number of variables, what is directly written
in LocalSolver as violations[o][j] <- max(nbVehicles[o][j] -P[o], ©).

http://www.localsolver.com/documentation/quickstart/modelingprinciples.html

Similarly, all linearizations of a maximum, a condition or a conjunction should be
translated into their direct LocalSolver formulation with operators max, iif and
and. Piecewise linear function can be simply written as well. If your MIP contains
a piecewise linear function (possibily with associated binary variables) making Y
equal to f(X) such that on any interval [c[i-1],c[i]] we have Y = a[i] * X +
b[i] with iin (1..3), then you will directly define Y as follows: Y <- X < c[1] ?
a[1]*X+b[1] : (X < c[2] ? a[2]*X+b[2] : a[3]*X+b[3]);

After these transformations we obtain the following model:

ERRELEHEPHERE

ETUUIDRATHALIZELSIC. RVEELGETIUVIDREIL. REZE
Dty FORIRTY, CZTop [c] PIDEEE, DI RTOEHDIEN
cp [c] [P]DENSHBTELINDT, REEHDEWVEETHD, ZZ THH
EHEZDELIICEL I ENTEET, HlIZIE, nbVehicle [o] [j] == sum
[k in 1..Q [o]] (op [0] [j + k=-1]) &L 5> ®I%I(E. nbVehicles &LVD FHEE
EEETHRICEHRTEZTI] [J] <- sum [k in 1..Q [o]] (op [0] []j +
k-11) TH 5,

BEAEDORDLYICEREEETFEZFERAT S

CCT. COETLOVW DOADARKXNERICIEMKE(LREXDER
ftchd MY ZET, op [o] [p] = sum [1.nbClasses : options [c]
[o]] (cp [c] [p]) DHIFIIE op [o] [pIAMEESN-RAEDN 1 DA 1I2FLL
HAHEBEBIZTIZZE L. nbClasses : options [c] [ol1®D or : op [0] [p] < -
Ffz&lel (cp [c] [pD)

&ZIZ, BR[o] [JIDOHEKDRT7IL, E&Io] [j]1 < - max (nbVehicles
[o] [j]) &L TLocalSolver ICEEEZZAETNIEHOEKRELTTEET 15
AETY, 1 [j]1 -P [o]l. 0) .

BIFkIZ. =K. &, FIEHBEORBILEIT T, EBEFmax, iif. BLUY
(&> TEH LocalSolver ERXILICEMT EMLELAHY FT, RHOMERIBELK
HHEMCEC I ENTEFET, HEDONMPALAEFEDORXM[c [i-11. ¢ [illIZ
Y=a [i]zHED2&53GYZET X) IZF LT HXOrREES BEET LH/N
A FEHEEDOAREENHS) X+b [ilEiZx (1..3) THETDE, Y
ERODESICEEEELET., Y- X<c[1]?2 a1l *X+b[1]: X
<c [2]7a [2] * X +Db [2] :a [3] * X + Db [3]) ;

NODEHRDE., BRIIUTDETILERS:

function model () {
cp[l-.-nbClasses][1. .-nbPositions] <- bool();

for [c in 1..nbClasses]
constraint sum[p in 1._nbPositions](cp[c][p]l) == nbCars[c];

for [p in 1.._nbPositions]
constraint sumf[c in 1.._.nbClasses](cp[c]l[p]l) == 1;

op[o in 1._nbOptions][p in 1.._.nbPositions] <- or[c in
1..nbClasses : options[c][o]l]l(cplclipD):;

nbCarsWindows[o in 1..nbOptions][p in 1._nbPositions-
ratioDenoms[o]+1] <-
sum[k in 1._ratioDenoms[o]](op[o][p+tk-1]);

nbViolationsWindows[o in 1..nbOptions][p in 1..nbPositions-
ratioDenoms[o]+1] <-

max(nbCarsWindows[o][p]-ratioNums[o], 0);

obj <- sum[o in 1..nbOptions][p in 1.._nbPositions-
ratioDenoms[o]+1](nbViolationsWindows[o][p]):
minimize obj;

}
Remove useless constraints

If your model contains valid inequalities they can (and should) be removed.
Since LocalSolver does not rely on a relaxation of the model, these inequalities
would only burden the model.

You must omit symetry breaking constraints as well: since LocalSolver does not
rely on tree-based search, breaking symetries would just make it harder to
move from a feasible solution to another one. Typically it could prevent
LocalSolver from considering a nearby improving solution.

EALGHKNZRYEKR<
ETIVIZAMLGTREXDNEEN TV SIGEITHIRTEET (BRI I2LENSH
YFEF) . LocalSolver (FETILOEMICIKFELGZWLZSH, ChoDFERKE
ETIVICEBENTEEZFTY,

symsry DIERHLEERTIDHENHYET , LocalSolver [V —R—XDEFRIZIK
FLGW =8, symetry ZHEE T HEEITRIREGFEN LRI DARIZFEEIT LD M EELL
IHYET , BEIL. LocalSolver MK DHEREIRETHDZE W ITHAIREMEL HY
F9,

	Decision variables and intermediate expressions
	Using non-linear operators instead of linearizations
	Remove useless constraints

